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In this work, an advanced approach to human motion recognition in HUMAN-
ROBOT COLLABORATION (HRC) systems is proposed. Classical motion
recognition methods, based on manually engineered features, have serious
limitations due to their inability to adapt to the unique characteristics of
individual performers and limited perception of complex scenes. The
introduced approach addresses these limitations by replacing fixed Gabor
filters with trainable convolutional layers of a three-dimensional
convolutional neural network (3D-CNN), which enables automatic extraction
of Spatio-temporal features from video sequences.
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1. INTRODUCTION

Current trends in the automation of work processes are characterized by active implementation of
robotic technologies across virtually all industrial sectors, including mechanical engineering,
agriculture, nuclear power industry, aerospace sector, etc. One of the key development concepts is
Human-Robot Collaboration (HRC)—the joint execution of complex tasks by humans and robots
within a unified workspace. This concept allows for significant improvement in production efficiency
through optimal distribution of functions between an operator and a machine. However,
implementing the HRC concept requires effective interaction mechanisms between human
operators and robots.

One crucial aspect of this interaction is the ability of robots to accurately recognize operator actions.
This becomes particularly important under dynamically changing and heterogeneous working
environments typical of modern manufacturing facilities.

To address these challenges, systems capable of processing video data streams from various types
of sensors, such as cameras operating outside the visible spectrum, are required. Such systems
enable creation of flexible automated environments that facilitate rapid adaptation of production
processes to changes in operational conditions.

In the context of HRC, human action recognition is vital for several purposes, including enhancing
collaboration between humans and robots [1], optimizing industrial processes [2], assisting
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operators in performing their duties [3], ensuring occupational health [4], and safeguarding worker
safety [5].

Therefore, developing methods for analyzing video streams and algorithms for recognizing operator
actions represents a critical scientific problem whose solution will significantly expand the
capabilities of robotic systems in collaborating with humans.

2. Related Works

Within the HRC (Human-Robot Collaboration) paradigm, special attention is paid to tracking the
movements of the human operator, establishing the context of interaction [6], and predicting
subsequent human behavior for completing specific tasks. The context of interaction includes
identification of objects (components or tools) with which the operator works, the sequence of
actions during task execution, and the conditions of the working environment. Given that the same
tasks executed by different operators can differ considerably, the context of interaction exhibits
considerable variation. Consequently, accurate recognition of human movements is crucial for
building reliable HRC systems [7].

Movement recognition is a critically important element of effective HRC systems [8]. Modern
methods for recognizing human actions can be broadly divided into two categories: methods based
on computer vision systems and methods relying on wearable sensors. Among these, approaches
based on computer vision deserve particular attention because they provide a less invasive method
of data collection compared to wearable-sensor-based methods. Typically, these methods rely on
depth sensors to construct a three-dimensional skeletal model [2].

Methods for recognizing human actions can be grouped into three broader categories: traditional
methods, deep-learning-based methods, and hybrid approaches combining both.

Traditional methods involve predefined (“manual”) features that are often used in conjunction with
classic classifiers such as Random Forest and Support Vector Machines (SVM). These methods
extract low-level features from video sequences and subsequently make decisions using
standardized statistical techniques.

Examples of traditional methods include:
Feature extraction using Histograms of Oriented Gradients (HOG) [9];
Methods for encoding spatio-temporal trajectories [10].

However, traditional methods suffer from difficulties in scalability and insufficient generalization
when handling large amounts of heterogeneous data.

Recent research trends highlight the widespread use of deep learning methods, with Long Short-
Term Memory (LSTM) networks [11], Convolutional Neural Networks (CNN) [12], and transformers
[13] dominating the landscape. These networks excel at automatically learning high-level features
directly from raw data, such as video frames, depth maps, or skeletal coordinates.

Deep learning methods deliver superior performance compared to traditional approaches, albeit
demanding significant computational resources and requiring large annotated datasets for training.

Hybrid approaches combine the strengths of traditional and deep learning methods. For instance,
some methods preprocess data using traditional techniques to extract informative features, which
are then passed to a deep neural network for final classification. This allows for merging the
interpretability of classical features with the universality of deep learning's representation power.

For example, the algorithm described in [2] for recognizing human-operator actions proceeds as
follows: first, a skeleton is constructed based on key points (elbows, wrists, shoulders) using the
OpenPose library [14]; then, contextual features are extracted by identifying objects using VGG-16
architecture [15]; finally, classification is performed using a recurrent neural network (RNN) based
on an encoder-decoder architecture [16]. Another notable example is the approach presented in
[17], which employs a spatial-temporal graph convolutional network (ST-GCN) to analyze upper-
body joint positions and arm movements to determine technological operation contexts.
Additionally, the method proposed in [18] calculates temporal optical flows (Optical Flow) and
processes the data using a multi-layer LSTM network.
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Most existing methods confront common challenges, such as illumination changes, interference,
occluded body parts, and the necessity of functioning in near-real-time modes. Hence, recognizing
human actions remains an ongoing challenge aimed at maximizing accuracy and reliability.

3. Proposed method

In visual sensor-based motion capture systems, human movement data can be obtained by
extracting key contextual information from pixels of video or images [1]. Traditional methods of
motion perception and recognition heavily rely on manually engineered features, which require
prior domain expertise and subjective choices. Deep learning-based approaches overcome these
limitations by enabling automatic extraction of meaningful features.

In the original version of the algorithm [19], we extracted motion information using three-
dimensional spatio-temporal Gabor filters with fixed parameters. Although these filters possess
mathematical interpretability, they have several drawbacks: they are not adaptable to data, not
trainable, and their effectiveness strongly depends on precise tuning of hyperparameters (scale,
orientation, frequency, etc.).

In the modified version, Gabor filters are replaced with learnable layers of a three-dimensional
convolutional neural network (3D-CNN). This approach allows the system to automatically extract
spatio-temporal features from video sequences based on the data itself, rather than relying on
predefined templates.

The input to the module is a video clip (e.g., consisting of 16 frames, each sized 128x128 pixels), and
the output is a feature tensor describing local motion and texture properties.

The proposed modification utilizes a three-dimensional convolutional neural network (3D-CNN)
architecture specifically tailored for extracting spatio-temporal features from video sequences.
Below is a detailed breakdown of the architecture:

Architecture

Conv3D Layer #1

Parameters: kernel size 3x3x3, stride=1, padding=1, filters=32.

Output: Shape 16x128x128x32.

Batch Normalization + ReLU Activation

Normalizes and applies ReLU activation to stabilize and accelerate training.
Output: 16x128x128x32.

Conv3D Layer #2

Parameters: kernel size 3x3x3, stride=1, padding=1, filters doubled to 64.
Output: Shape 16x128x128x64.

Batch Normalization + ReLU Activation

Output: 16x128x128x64.

MaxPool3D

Parameters: pool size=2x2x2, reducing each dimension by half.

Output: 8x64x64x64.

This architecture allows the network to automatically learn and extract the most relevant spatio-
temporal patterns, adjusting filters to fit specific actions, scenes, and sensors. Furthermore, these
descriptors exhibit versatility and can be trained on diverse data sources, such as RGB, depth, or
optical flow.

Using the architecture described above, the 3D-CNN model extracts features from a video sequence
belonging to the "push” class from a standard dataset described in reference [20]. The visualization
of the model's output features is illustrated in Figure 1.

1159



Zhdanova et al. Spatio-Temporal Feature Learning with 3D-CNN

Fig 1. Example of extracting spatio-temporal features using 3D-CNN from a video sequence: the
average of the spatio-temporal features over the channels is shown on the right; the left shows 1
frame from the “pushing” video [20]

Here is a detailed explanation.

Let a video clip consist of T frames, each of size HxW, and with either 1 or 3 channels (depending on
the modality: RGB or depth). Then:

X € ]RTXHXWXC

Where X is the input of the first layer. Specifically: T is the number of frames, H and W are the height
and width of each frame, C is the number of channels (e.g., 3 for RGB).

Next, a 3D convolution operation is performed, which performs convolution across the spatio-
temporal domain.

Let

w O] € RkTXkH XKy XCinXCoyt

Be the filter used at layer I, where: ky, ky, ki, are the kernel sizes along the temporal, height, and
width dimensions, respectively, Cj,, C,:are the numbers of input and output channels, respectively.

Given an input tensor

X(l) € RTXHXWXCjy

The 3D convolution operation computes as follows:

ky-1  ky-1

Cin
! v — akp—1 ! !
YO, pwe == Xi = 0Fr Z WO, ieac XOtiintjwrkd+n,
a=1
j=0 k=0

Where: Y is the output of the convolution, b, is the bias term for channel c.
After the convolution, a nonlinear activation function, such as ReLU, is applied:
Z0 = g(¥®) = max(0,YD)

Normalization and pooling can then be applied using Batch Normalization across the 5D tensor and
3D MaxPooling:

BatchNorm3D: 2 = BN(z()

MaxPool3D with kernel py X py X py: XD thwe = maxi,j, k ZAt(i_)i,h+j,W+k,C
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The final motion feature tensor is formed after several layers of convolution; we obtain the feature
tensor:

Fmotion = f3DConvNet(X) € RT' H'X W' D

Where: D — the number of features (tensor depth), f3pconvnet — the entire function of the 3D
network.

The resulting motion feature tensor has the dimensions: T'xH'xW’xD. Each element of this tensor
describes the dynamics of motion in a local 3D-cube region and contains 64 features (tensor depth)
— values that define local spatio-temporal patterns.

This tensor can be used as: local features (for spatial pooling or attention), input to a global classifier,
or as one of the streams in a fusion architecture (together with skeleton descriptors, etc.).

The training process is conducted as follows. Let Fmotion proceed to the classifier f; which
predicts the action class:

37 = fcls(Fmotion)
The model is trained on a labeled dataset {(X;,y;)}i = 1¥ by minimizing the cross-entropy loss:

N
L= —Z logp (v:1X:)
i=1

Where: p(y;|X;) = Softmax(f cls(f3pconvnet (Xi)))-

Gradients propagate through the entire stack, including the trainable filters W ®, which are updated
using gradient descent.

The general block diagram for action classification with the new stage described above is presented
in Figure 2.

video 3D DMD
sequence
Demsmr?-mak.lng | SVM
of classification

Fig 2. The general block diagram for action classification
The proposed model consists of the following components:

e The input layer accepts video data.

e Atrainable 3D convolutional layer replaces the fixed Gabor filter.

e Dense difference of micro-blocks computes a descriptor that describes the actions occurring
within the frame [19].

e SVM (Support Vector Machine) is applied for final classification.

Replacing fixed 3D Gabor filters with trainable convolutional filters allows the model to
automatically extract optimal motion features, improves adaptation to data, noise, and complex
actions, and enhances classification accuracy through deep learning.

To verify the effectiveness of the developed algorithm, a test dataset consisting of 10 classes of
gesture commands was collected: “hello,” “cross,” “ready,” “bravo,” “push,” “swipe left,” “swipe right,”
“fall,” “hands up,” and “stand.” This number of gesture commands is sufficient for implementing
interaction with the robot and conducting experimental research. The database was obtained under
laboratory conditions using a smartphone camera with specifications of 64 megapixels and an

UG
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aperture of f/1.8. The object was positioned in front of the camera at a distance of 1.5 to 2 meters. A
total of 50 participants performed each action eight times during the preparation of the test set,
resulting in 4,000 videos of gesture commands being recorded. Each video does not exceed three
seconds in duration. As a result of the experiment, a probability of correct gesture recognition was
achieved at 90.3%, which confirms the proper functioning of the developed algorithm under
simulated conditions.

SUMMARY AND CONCLUSION

In this paper, an effective approach to human motion recognition in a collaborative human-machine
interaction (HRC) system is proposed. The main achievement is the implementation of a three-
dimensional convolutional neural network (3D-CNN), which automatically extracts spatio-temporal
features from video sequences. The proposed architecture outperforms traditional Gabor filter-
based methods.

The combination of trainable convolutional filters and 3D-CNN architecture allows for a significant
increase in motion recognition accuracy, reducing the risk of errors and increasing the safety and
efficiency of the production process.
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