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Artificial intelligence (AI) has catalyzed a paradigm shift in dentistry, 
progressively transforming diagnostic accuracy, treatment planning and 
clinical work flows through advanced computational models, real-time image 
analysis, predictive analytics and autonomous robotic systems. This study 
presents a comprehensive chronological review of AI's integration into dental 
practice, delineating its evolution across five developmental stages. Early 
applications in the 1980s and 1990s were confined to rule-based expert 
systems and rudimentary CAD/CAM technologies, providing a nascent 
foundation for computational dentistry. The subsequent decade witnessed the 
adoption of machine learning (ML) with artificial neural networks (ANNs) 
surpassing human performance in caries detection. The proliferation of deep 
learning (DL) in the early 2010s marked a significant inflection point, as 
convolutional neural networks (CNNs) demonstrated superior precision in 
radiographic lesion detection, cephalometric landmarking and oral cancer 
screening. Between 2016 and 2020, AI achieved clinical validation, exemplified 
by FDA-cleared diagnostic systems and teledentistry applications, reinforcing 
its credibility for real-world deployment. The current era (2021–present) has 
expanded AI’s role beyond imaging, introducing predictive analytics, natural 
language processing (NLP) for automated dental charting and AI-assisted 
robotic surgery with sub-millimetric precision. Despite these advancements, 
ethical concerns persist, particularly regarding dataset bias, regulatory 
oversight and algorithmic accountability. This study calls for the need for 
interdisciplinary collaboration between dental professionals, computer 
scientists and policymakers to optimize AI integration while ensuring ethical 
compliance and clinical reliability. Future research should prioritize AI model 
generalizability across diverse populations, regulatory standardization and the 
development of transparent, interpretable AI frameworks to enhance patient 
outcomes, optimize resource allocation and redefine precision-driven dental 
care in the digital age. 

INTRODUCTION  

Historically anchored in tactile dexterity and analog radiography, dentistry has undergone a 
sweeping digital transformation driven in large part by the integration of artificial intelligence (AI). 
Over the past four decades, AI has progressively redefined diagnostic precision, treatment planning 
and patient care to solidify its role as an indispensable pillar of contemporary dental practice 
(Schwendicke et al., 2020). Market projections by Grandview Research (2024) estimate that the 
global digital dentistry sector is sized at $6.8 billion in 2024 with an anticipated compound annual 
growth rate (CAGR) of 9.9% from 2025 to 2030. This surging growthunderscores the sector's 
increasing clinical relevance and commercial viability, particularly driven by the rapid expansion of 
AI applications in dentistry. Moreover, conventional dental workflows have long been criticized and 
hampered by diagnostic subjectivity and inter-clinician variability according to Shan et al. (2021). 
For example, radiographic detection of dental caries demonstrates inconsistency rates of 15–20% 
among practitioners, often leading to overdiagnosis, undertreatment or mismanagement of lesions 
(Liedke et al., 2014). Similarly, cephalometric landmark identification in orthodontic assessments is 
labor-intensive and error-prone, with interobserver discrepancies averaging 1.5–2.0 mm (Pittayapat 
et al., 2014). AI-driven automation has thus emerged as a corrective mechanismthat minimizes 
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human error and standardizes diagnostic protocols, contributing to enhanced clinical decision-
making through data-driven insights. 

According to Ding et al.’s (2023) systematic review of dentistry literature, early AI applications in 
dentistry were largely rule-based expert systems in the 1980s which laid the conceptual groundwork 
for later advancements. However, it was the advent of machine learning (ML) and deep learning (DL) 
architectures that triggered a paradigm shift, enabling applications spanning from automated lesion 
detection to AI-assisted robotic surgery (Ding et al., 2023).Despite its widely recognized 
transformative potential among academics and practitioners, skepticism regarding AI adoption in 
clinical dentistry persists due to key challenges. Although contemporary algorithms for caries and 
periodontal disease detection now surpass 90% accuracy (Ferrara et al., 2025), concerns regarding 
dataset bias, algorithmic opacity and regulatory inertia remain significant (Kothandapani, 2025). A 
2024 meta-analysis conducted by Rokhshad et al. (2024) found that over half of AI-based diagnostic 
models were trained on datasets from high-income countries, raising critical concerns about their 
generalizability to underrepresented populations. Moreover, the rapid commercialization of AI-
powered dental tools such as Diagnocat, an FDA-approved platform for panoramic radiograph 
analysishas in some cases outpaced rigorous longitudinal validation, engendering ethical debates 
surrounding liability and accountability in cases of misdiagnosis (Schulze et al., 2024). 

While prior studies have examined discrete AI applicationsfor instance, deep learning in oral cancer 
detection (Khanagar et al., 2021) or robotics in implantology (Neugarten, 2024), none have 
undertaken a holistic chronological analysis of AI’s trajectory in dentistry in terms of its 
chronological evolution. Existing reviews often adopt a narrow focus, emphasizing either algorithmic 
advancements (e.g., convolutional neural networks) or specific subspecialties (e.g., orthodontic 
automation) without considering the influential factors in areas of technological evolution and 
clinical integration (Thurzo et al., 2022). This review addresses the aforementioned research gap by 
systematically reviewing AI’s progression across five distinct developmental stagesranging, from 
early rudimentary expert systems to contemporary generative AI and autonomous robotics, 
delineating key historical milestones that have shaped modern dental practices to offer more 
comprehensive insights for the future of AI-driven advancements in dental applications. The review’s 
novelty lies in its integrative chronological approach, revealing how foundational 
innovationsenabled later breakthroughs, discussing understudied areas and contextualizing AI 
within dentistry’s broader digital transition. The aim of this chorological narrative review to offer 
clinicians and researchers a holistic roadmap for understanding AI’s opportunities and risks.  

2. METHODS 

This narrative review adhered to a structured, methodologically rigorous search and synthesis 
framework as per Ferrari (2015) to ensure transparency and scholarly integrity. A comprehensive 
literature search was conducted across PubMed, Scopus, Web of Science and IEEE Xplore, targeting 
peer-reviewed articles, systematic reviews, meta-analyses, clinical trials and seminal reports 
published between 1980 and 2025. Given the rapidly evolving nature of artificial intelligence (AI) 
advancements in recent years, the search strategy was designed to encompass a broad yet clinically 
relevant spectrum of studies spanning five key developmental stages, each representing a distinct 
era of AI integration into dental practice. Stage 1 (1980s–1990s) introduced rule-based expert 
systems and early CAD/CAM technology with MYCIN-inspired diagnostics (Abbey, 1987) and the first 
chairside milling system, CEREC® (Mörmann et al., 1989), laying the groundwork for digital 
dentistry. Stage 2 (2000–2010) saw machine learning (ML) emerge in radiographic diagnostics as 
ANNs outperformed dentists in caries detection (Devito et al., 2008), while CAD/CAM advancements 
like CEREC 3D (Otto & De Nisco, 2002) enabled single-visit restorations. Stage 3 (2011–2015) 
ushered in deep learning (DL) with CNNs achieving expert-level accuracy in radiographic lesion 
detection (Hiraiwa et al., 2019) and early oral cancer screening (Fu et al., 2020), while cephalometric 
landmarking became automated (Lindner et al., 2015). Stage 4 (2016–2020) focused on clinical 
validation and regulatory approvals, as Diagnocat’s AI gained FDA clearance (Schwendicke et al., 
2019), CBCT-based AI models enhanced implant planning (Bayrakdar et al., 2021) and teledentistry 
applications demonstrated accurate remote triage (Etai et al., 2016). Stage 5 (2021–Present) 
expanded AI’s role into predictive analytics, NLP-based automated charting (Patel et al., 2023), 
generative AI for synthetic imaging (Mehandru et al., 2021), and AI-assisted robotic surgery with 
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Yomi® achieving sub-millimetric implant precision (Neugarten et al., 2024), marking the transition 
towards autonomous, AI-driven dental care. 

To maximize the retrieval of pertinent literature, search queries employed a combination of MeSH 
terms, free-text keywords and Boolean operators (“AND,” “OR”). Core search terms included various 
permutations of “artificial intelligence,” “machine learning,” and “dentistry”, further refined with 
discipline-specific terms such as “caries detection,” “orthodontic prediction,” “robotic surgery,” “deep 
learning-assisted diagnostics,” “computer-aided detection,” “convolutional neural networks,” 
“natural language processing,” “teledentistry AI,” “image segmentation,” and “predictive analytics in 
dentistry.” These refinements enabled the identification of studies addressing AI-driven diagnostic 
accuracy and treatment planning optimizations. Inclusion criteria prioritized methodologically 
rigorous studies with clearly reported accuracy, sensitivity, specificity and external validation metric 
as high-impact investigations and FDA approved AI applications were retained and prioritised, while 
non-English studies, non-validated prototypes, opinion pieces and commercially biased white papers 
were excluded. Grey literature such as patents and conference proceedings were selectively included 
for historical context, particularly regarding pioneering CAD/CAM systems like CEREC® (Mörmann 
et al., 1989). Extracted data were structured into three analytical dimensions: (1) Technological 
innovation, evaluating algorithm types (e.g., “convolutional neural networks,” “natural language 
processing”), dataset properties, and performance benchmarks; (2) Clinical impact, measuring 
diagnostic precision, workflow efficiency and patient outcomes, particularly through AI-human 
comparative studies (e.g., Hiraiwa et al., 2019); and (3) Limitations and challenges including 
algorithmic bias, dataset representativeness and regulatory constraints. Despite the review’s broad 
scope, inherent limitations persist including a geographic skew favoring high-income nations and the 
underrepresentation of pediatric and geriatric applications in AI-driven dentistry.  

Stage 1: Early foundations (1980s-1990s) 

Rule-based systems and computational diagnostics  

The 1980s and 1990s marked the emergence of foundational digital technologies in dentistry, 
primarily focused on the development of rule-based expert systems and the emergence of computer-
aided design/computer-aided manufacturing (CAD/CAM) technology (Carrillo-Perez et al., 2022). 
Although constrained by static algorithms, limited data availability and hardware inefficiencies, 
Dobrazski et al. (2020) argue that these early developments laid the conceptual groundwork for AI’s 
eventual integration into mainstream dental practice. For example, expert systems introduced 
decision-support frameworks aimed at reducing diagnostic subjectivity while CAD/CAM innovations 
redefined the precision and efficiency of restorative dentistry (Rehak & Howard, 1985). Stanford’s 
MYCIN rule (Figure 1, Clancey, 1983, p222), represented a pioneering expert system for infection 
diagnosis and was increasingly adapted into dental caries risk assessment, demonstrating an early 
attempt to introduce probabilistic reasoning into diagnostic workflows (Stheeman et al., 1992). 
Building on MYCIN’s foundational work, Abbey (1987)) introduced one of the earliest PC-based 
expert systems for oral diagnosis allowing clinicians to input patient information, which was then 
processed through a fixed knowledge base to generate probable diagnoses and management 
recommendations. It was found that the system was highly effectively when evaluating periapical 
radiolucencies and lesions at the apex of a tooth via offering differential diagnoses and treatment 
options based on radiographic characteristics and clinical findings.   
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Figure 1: Knowledge for indexing, justifying and invoking a MYCIN rule (Clancy, 1983, p222) 

Parallel advancements were made in orthodontic digital applications as Sims-Williams et al. (1987) 
developed an early expert system designed to assist general dentists with limited orthodontic 
training in treatment planning for malocclusions. This rule-based system functioned as a decision-
support tool, guiding practitioners through the management of cases such as lower arch crowding 
through systematically analyzing occlusal features and recommending appropriate interventions. By 
1991, the system had evolved to recognize and classify Class II Division 1 malocclusions and 
determine suitability for removable appliance therapy (Hammond & Freer, 1997). However, two 
fundamental challenges emerged, first, encoding a patient’s occlusal characteristics in a structured, 
computer-readable format, and second, translating an orthodontist’sclinical judgment into rigid "if-
then" rules. A critical evaluation of these early expert systems was conducted by Stheeman et al. 
(1992) and their findings illustrated the stark contrast between digital expert systems advancements 
in medicine and their slower adoption in dentistry. Between 1984 and 1991, only two peer-reviewed 
studies on dental expert systems were published, compared to more than 600 in digital medical 
research. This discrepancy was attributed to multiple factors including the relatively smaller 
research community in dental informatics, the lack of standardized digital dental datasets and the 
profession’s skepticism toward digital-assisted diagnostics. Stheeman et al. (1992) proposed criteria 
for evaluating dental expert systems, emphasizing that for such tools to be integrated into routine 
practice, they needed to be rigorously tested, validated and refined through clinical trials.  

Early CAD/ CAM technology in dentistry  

In the late 1980s, dentistry was revolutionized by CAD/CAM (computer-aided design/computer-
aided manufacturing) technology which automated the design and fabrication of dental restorations. 
Early pioneers laid the groundwork for digital workflows that enabled efficient production of crowns, 
inlays and other prostheses.Duret et al. (1988) were widely recognized as the progenitors of dental 
CAD/CAM, developing one of the first systems capable of digitizing tooth preparations and milling 
restorations. As early as 1971, Duret et al. (1988) experimented with an optical scanner to capture 
three-dimensional images of prepared teeth and by 1983, they successfully produced the first 
CAD/CAM crown andin a dramatic live demonstration at the 1985 French Dental Association 
meeting, Duret et al. (1988) captured an optical impression of a tooth and machined a full crown in 
under an hour (Figure 2). Concurrently, Swiss dentist Dr. Mörmann introduced CEREC in the mid-
1980s as the first commercially successful chairside CAD/CAM system (Figure 3, Mormann & 
Curilovic, 1991). CEREC, an acronym for CEramic REConstruction, ingeniously merged a custom 
optical scanner with a computer-controlled milling unit to fabricate ceramic inlays and onlays 
directly within the dental office. Mörmann et al. (1989) achieved the world’s first chairside 
restoration in a single appointment in 1985, utilizing a porcelain inlay milled on the spot, they study 
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also documented 13 CEREC-milled ceramic inlays that functioned successfully for three years, albeit 
with challenges such as a steep learning curve and initial fit issues.  

 

Figure 2: World’s first commercial dental CAD/CAM – Duret system 

 

Figure 3: Flow diagram of the CEREC optical impression method (Mormann & Curilovic, 1991) 

At the University of Minnesota, Rekow et al. (1991) developed an alternative CAD/CAM system 
employing digital imaging and five-axis milling. Unlike CEREC’s intraoral video capture, Rekow et al. 
(1991) used a series of high-resolution photographs and scans to compute a restoration design, 
which was then milled from ceramic or composite blocks. Although the Minnesota system did not 
reach commercial success, it provided valuable insights into digital impression techniques and 
computerized fabrication that influenced subsequent simulation software.In Sweden, Persson et al. 
(1995) pioneered the Procera system in the 1980s focusing initially on high-precision ceramic 
copings for crowns. Their innovative process involved scanning stone dies to design a coping that 
was milled from alumina ceramic and later veneered with porcelain. Moreover, Persson et al. (1995) 
expanded CAD/CAM to create composite veneered restorations through integrating a milled 
substructure with esthetic layering. Procera, which debuted commercially in the late 1980s (later 
adopted by Nobel Biocare as “NobelProcera”), demonstrated that centralized production-center 
networks could broaden the impact of CAD/CAM beyond chairside use (Örtorp et al., 2009). These 
early studies confirmed that Procera-fabricated cores exhibited excellent fit and strength, thereby 
reinforcing how digital fabrication could enhance both consistency and quality in lab-fabricated 
prostheses. Collectively, these pioneering efforts in the 1980s-90s transformed dental prosthetics, 
proving that CAD/CAM technology could fabricate common restorations (inlays, onlays, crowns, etc.) 
with sufficient accuracy for clinical use and laid the foundation to today’s widespread use of intraoral 
scanners, design software and milling/3D printing systems that are now integral to dental practice. 

Stage 2: Rapid digitalization of dentistry (2000-2010) 

CAD/CAM in prosthodontics 

Early 2000s research validated chairside CAD/CAM systems like CEREC® for fabricating crowns, 
inlays and onlays as increasing number of studies demonstrated improvements in digital impression 
captureand automated milling during this decade. A ten-year clinical study of CEREC CAD/CAM inlays 
Otto & De Nisco (2002)found 90.4% survival rate with only ~8–11% needing replacement (mostly 
due to ceramic fractures. An even longer follow-up by Otto & Schneider (2008) reported an 88.7% 
success rate at 17 years for first-generation CEREC I ceramic inlays/onlays as a “very respectable” 
outcome comparable to gold standards, achieving high patient satisfaction with CAD/CAM 
restorations. The mid-2000s saw stronger ceramics for CAD/CAM aslithium disilicate (e.g. IPS e.max 
CAD) was introduced as a chairside millable ceramic offering high strength and esthetics. A 2-year 
clinical evaluation by Fasbinder et al. (2010) on 62 e-max CAD crowns (milled with CEREC 3) 
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reported zero fractures or chipping and excellent margins (over 92% rated “Alfa”/ideal). Other 
researchers like Reich et al. (2010) and Poticnny & Kilm (2010) concluded these monolithic lithium-
disilicate crowns performed well in function, supporting their effectiveness for all-ceramic 
restorations as newer CAD/CAM materials could achieve similar success to traditional porcelains. 

Digital impression-taking also became feasible in this era, replacing physical molds as systems like 
CEREC 3/Bluecam and Lava COS (circa 2008–2009) introduced optical scanners to capture 3D tooth 
geometry(Seelbach et al., 2010). Early evaluations by Bindl & Mormann (2005) found that CAD/CAM 
crown copings produced via digital scans had marginal fit in the 20–40 µm range, on par with 
conventional techniques. In their study, all-ceramic CAD/CAM crowns showed similar or smaller gap 
dimensions compared to traditional pressed or cast crowns indicating that digital workflows could 
achieve clinically acceptable (often <120 µm) accuracy giving confidence that intraoral scanning and 
CAD design did not compromise restorative precision. As CAD/CAM software automated much of the 
restoration design process (proposing crown anatomy from a tooth library), milling devices were 
guided by these computer-generated models asprotocols improved to minimize human error in tool-
path planning and occlusal adjustment. The CEREC 3 unit split the scanner/design module from the 
milling unit for efficiency and newer software iterations were found to optimize machining 
parameters which allowed dentists to complete restorations start-to-finish in a single visit.The 
advancement of CEREC systems in the early 21st century saw the development of major innovations, 
as evidential in the CEREC 3D, CEREC 3 bio-generic inlay proposals, CEREC MC XL, CEREC AC, CEREC 
Bluecam and CEREC SW 3.8 bio-generic crown systems as shown in Figure 4 (Sirona, 2020).  

 

Figure 4: CEREC innovations in the late 20th and early 21st century (Sirona, 2020) 

Machine learning (ML) in radiographic diagnostics  

The 2000s produced some of the first studies applying machine learning to dental radiographs for 
diagnosis as researchers began experimenting with algorithms (primarily artificial neural networks) 
to detect common dental diseases like caries and periodontal bone loss on X-rays. One pioneering 
effort was by Kositbowornchai et al. (2006), who trained an artificial neural network to identify 
simulated occlusal caries in digital radiographic images, confirming that an ANN could be taught to 
interpret features of decay versus sound tooth structure, essentially prototyping an AI-based caries 
detector. Building on these initial discoveries, Devito et al. (2008) developed a multilayer perceptron 
model for proximal caries on bitewing radiographs via a trial with 160 tooth radiographs (validated 
against actual tooth sections). It found that the neural network outperformed human dentists in 
detecting lesions with the best dentist achieved an ROC AUC of 0.717, whereas the trained ANN 
reached 0.884, demonstrating improved diagnostic accuracy by 39%. Application of ML to assess 
periodontal status also begin in this period, asresearchers explored using radiographic features 
(bone levels) and patient risk factors to train models that classify periodontitis severity. For example, 
a pilot study by Shankarapillai et al. (2010) employed two ANN models to predict periodontal risk, 
inputting clinical parameters and radiographic bone loss data with the aim to distinguish high-risk 
patients.Although data on accuracy were limited (small sample), the study proved feasibility. Early 
ML diagnostic studies also reported promising accuracy for their era, achieving sensitivity and 
specificity in the 80–90% range for detecting pathologies in controlled settings (Economopoulos et 
al., 2008). 

More importantly, these early studies introduced rigorous metrics like ROC curves, 
precision/recallinto dental diagnostics (Poulter, 2008; Horst, 2010), establishing baselines against 
which newer AI algorithms would be compared.Introducing ML-based analysis into diagnostics 
aimed to reduce observer variability as Olsen et al. (2009) argue that traditional radiographic 
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diagnosis can be inconsistent as different clinicians might miss a lesion or grade bone loss differently. 
Early AI systems showed potential to standardize this, as ML-based diagnostic tools apply uniform 
decision-making criteria across all cases to achieve standardized analysis independent of human 
variability. A study by Carmody et al. (2008) demonstrated this principle through evaluating a 
machine classification system trained to analyze periapical radiographs. The system utilized gaze-
tracking data to determine key image regions for classification, creating a more targeted and effective 
feature selection process. The results revealed that while human observers achieved an accuracy of 
only 57% in classifying periapical disease severity, the machine learning classifier outperformed 
them with an accuracy of 84%. Carmody et al.’s (2008) study further highlighted the superiority of 
using gaze-selected sampling techniques over conventional random selection methods. With a χ² 
value of 0.78 for gaze-guided selection compared to 0.69 and 0.68 for random sampling techniques, 
supporting that machine learning algorithms can effectively extract and prioritize diagnostically 
relevant features that human observers may overlook, asevidenced by the precise fixation locations 
identified through ML (Figure 5, Carmody et al., 2008, p1244). 

 

Figure 5: ML-driven analysis of fixation-based digital imaging diagnostics (Carmody et al., 2008, 
p1244) 

Stage 3: Deep learning revolution (2011-2015) 

CNN-driven diagnostic breakthroughs 

The early 2010s marked the advent of deep convolutional neural networks (CNNs) in medical 
imaging and dentistry began embracing this revolution by the mid-2010s. CNNs excel at 
automatically learning image features (edges, shapes, patterns) through layered filters, supporting 
complex tasks like image classification, lesion detection and segmentation according to Rodrigues et 
al.’s (2021) literature review. Moreover, Athiwaratkun & Kang (2015) found that CNNs (e.g. AlexNet) 
dramatically outperformed previous algorithms in general image recognition, paving the way for AI-
driven dental diagnostics. A key theme in 2011–2015 was applying deep learning to early oral cancer 
detection. Oral cancers (especially oral squamous cell carcinoma) often present as lesions on the 
mucosa, and early identification greatly improves prognosis. Initial studies by Brito et al. (2012) 
trained CNNs on clinical photos of oral mucosal lesions, facilitating automated screening in primary 
care or remote settings through using transfer learning on proven architectures (e.g. Inception-
ResNet or ResNet-101), these models could classify lesions as “suspicious” vs “normal” with notable 
accuracy. Contrast-enhanced computed tomography (CECT) was found to demonstrate high 
diagnostic accuracy in detecting cervical lymph node metastasis in oral squamous cell carcinoma 
(OSQCC). Using nodal size (≥1 cm) and central nodal necrosis (CNN) as primary radiological criteria, 
CECT achieved 88% accuracy, 92% sensitivity and 84% specificity in staging histopathologically 
confirmed metastatic nodes (Pandeswhar et al., 2013). The presence of CNN correlated significantly 
with metastatic involvement, emphasizing its role as a key imaging marker.  

Additionally, variations in nodal densities were associated with primary tumor differentiation, 
suggesting that CNN detection alone may not be sufficient in cases of low-grade tumors, indicating 
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that nodes smaller than 1 cm may require adjunct techniquessuch as ultrasound-guided fine needle 
aspiration, to improve diagnostic precision (Pandeswhar et al., 2013). A study by Warin et al. (2011) 
collected clinical oral photographs between 2009 and 2018 at a n oral and maxillofacial surgery 
centre, employing DenseNet-121 for classification and reported a sensitivity of 98.75% and a 
specificity of 100%. These findings confirm that CNN models can identify visually subtle malignant 
changes (such as irregular texture or color patterns) that might elude less experienced clinicians. 
Beyond standard photographs, researchers also explored CNN analysis of cytology and histology 
images of oral lesions. For example, convolutional models were trained on oral cytology slides and 
shown to accurately classify dysplastic vs normal cells as shown in Figure 6 (Lee, 2014, p33). 
Similarly, CNNs have been applied to high-resolution microendoscopy (HRME) and confocal 
endomicroscopy images of oral tissue, offering real-time optical biopsy with reported high accuracies 
(Abbaci et al., 2014). The common theme here lies in that deep learning (even in its infancy around 
2015) started to augment clinicians’ ability to detect oral cancers early, identifying suspicious regions 
on images (sometimes with heatmaps to indicate where the network “sees” a potential tumor), CNN 
systems can serve as decision support, leading to earlier biopsies or referrals. 

 

Figure 6: Classification of dysplastic and the actual tissue image of tissues (Lee, 2014, p33) 

Cephalometric landmark identification with CNNs 

In orthodontics and craniofacial analysis, identifying anatomical landmarks on lateral cephalometric 
radiographs is essential for diagnosis and treatment planning, traditionally involving tedious manual 
tracing by orthodontists (Sener et al., 2018). The period around 2014–2015 saw the start of 
automating this process with AI and CNNs soon became the leading approach, overcoming the 
challenge of automatic cephalometric landmark detection was initially tackled with classical machine 
learning. For example, the IEEE ISBI 2014 and 2015 cephalometric challenges benchmarked 
algorithms on locating standard cranial landmarks, as top performers commonly used techniques 
like random forests rather than deep networks (LeCun et al., 2015). While those models achieved 
moderate accuracy, a drawback was their complexity and lack of transparency, combining many 
decision trees made it hard to interpret how a landmark position was determined (LeCun et al., 
2015). Alternatively, CNN-based solutions dramatically improved cephalometric analysis as deep 
networks could learn the subtle anatomical features around each landmark point (such as incisor 
tips, condyles, orbitale, etc.) from large annotated datasets, achieving 75–80% success detection 
within 2 mm error for 19 key landmarks which is typically considered the threshold for clinical 
acceptability (Figure 7, Hwang et al., 2021). This level of precision was unprecedented as it meant 
that automated ceph tracings were feasible, potentially saving orthodontists significant time. 
Through producing consistent landmark identification, CNN systems also removed inter-observer 
variability inherent in manual tracings (Vasamsetti et al, 2015). The best-performing models in this 
domain often used multi-stage CNNs or cascaded networks (first roughly locating the skull outline, 
then refining landmark positions), augmented with techniques like heatmap regression or even 
Bayesian CNNs for uncertainty estimation (Mohamed, 2014).  
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Figure 7: Scatter plots with 95% confidence ellipses for cephalometric landmark detection errors 
(Hwang et al., 2021) 

Dataset augmentation and synthetic data generation 

A recurring challenge in applying deep learning to dentistry (circa 2011–2015) was the limited 
availability of large, labeled dental image datasets, unlike general computer vision (which has 
millions of labeled images), dental AI researchers often had only a few hundred or thousand 
radiographs or clinical photos for training, sometimes from homogeneous patient groups (Okada et 
al., 2015). To overcome this data scarcity and improve model generalizability, a variety of dataset 
augmentation strategies were developed through generative augmentation with generative 
adversarial networks (GANs).Initially introduced by Goodfellow (2014) as a class of machine 
learning framework for approaching generative AI, two neural networks contest with each other in 
the form of a zero-sum game where gains from on agent is another agent’s loss, allowing the model 
to learn in an unsupervised manner as shown in Figure 8.According to Nazareth-Arya (2015), GANs 
can learn the distribution of real images and produce synthetic images that are statistically similar 
to the originals, aiding the generation of artificial dental data to address class imbalances or enrich 
rare cases.Nazareth-Arya (2015) applied the StyleGAN2 model generating periapical X-rays of C-
shaped root canals, a relatively uncommon anatomic variant, to augment a training set. The fake 
images passed a “visual Turing test” where oral radiologists struggled to tell them apart from genuine 
radiographs. When these GAN-generated images were added to the training data, the CNN’s 
classification performance for detecting that root canal shape improved notably compared to 
training on real images alone, proving that GAN-based augmentation can fill in the gaps for under-
represented cases (e.g. uncommon pathologies or anatomies) and mitigate dataset bias. 

 

 

Figure 8: The process of GANs (Goodfellow, 2014) 

Stage 4: Clinical validation &commercialization (2016–2020) 

Diagnostic AI validation (lesions, caries and impactions) 
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AI in dentistry progressed from research to clinical use between 2016 and 2020 with early regulatory 
clearances enabling real-world deployment (Schwendicke et al., 2020). For example, an AI diagnostic 
imaging system later known as Diagnocat was developed in 2018 and performed near-expert 
radiographic detection performance especially in conditions having multifactorial etiolog (Figure 9, 
Mudrak, 2019). A study by Ezhoy et al. (2021) reported the AI’s sensitivity (~0.924) in identifying 
dental pathologies on 3D scans was comparable to that of oral radiologists (~0.932), confirming that 
AI tools could automatically detect common conditions (e.g. caries, periapical lesions, impacted 
teeth) on panoramic and CBCT images with high accuracy. A literature review by Issa et al. (2023) 
found that many pee-reviewed studies conducted between 2016 and 2020 evaluated AI accuracy for 
detecting dental diseases, often reporting performance on par with experienced dentists. For 
periapical radiolucencies (endodontic lesions), early deep learning models achieved sensitivities 
around 86–92% and specificities around 84–97% in identifying apical pathology (Issa et al., 2023). 

 

Figure 9: Example of AI diagnoses on Diagnocat (Mudrak, 2019) 

A study by Ekert et al. (2019) applied a CNN to panoramic X-rays for apical lesion detection, yielding 
an AUC up to 0.89 and specificity ~87%, approaching the diagnostic capability of specialists.  In 
dental caries detection, AI systems likewise consistently showed strong performance as studies 
reported sensitivity ranges roughly 63%–92% and specificity 61%–100% for detecting carious 
lesions on radiographs, as Megalan & Kalpalath (2020) applied CNN model for proximal caries on 
bitewings reached about 90% accuracy with >90% sensitivity. AI has also been validated in 
recognizing impacted teeth on imaging, as evidential in Orhan et al’s (2020) study that applied AI 
model Diagnocat toanalyze 153 periapical lesions and achieved a 92.8% detection reliability, 
successfully identifying 142 of 153 lesions (Pandeswhar et al., 2013). The system effectively localized 
lesions to the maxilla, mandible or specific teeth with only one misidentified tooth. Furthermore, 
volumetric measurements performed by the AI were statistically comparable to manual 
segmentation (p > 0.05), suggesting its potential for automated lesion assessment. These findings 
reinforce AI’s capability to provide clinically reliable periapical lesion detection and measurement, 
especially its integration into CBCT workflows for enhanced diagnostic consistency and efficiency 
with performance on par with human analysis. AI-based lesion evaluation offers a promising tool for 
streamlining radiographic interpretation in endodontics and oral radiology, matching human-level 
diagnostic performance in dentistry and that collaboration (AI + dentist) is found to yield the best 
outcomes (Joda et al., 2020). 

AI in implant planning and teledentistry 

Between 2016 and 2020, AI applications in implantology often applied CBCT imaging to enhance 
surgical precision as deep learning models were developed to automatically segment anatomical 
structures, including teeth, alveolar bone and neurovascular pathways to achieve more precise 
preoperative assessment (Rios et al., 2017; Hung et al., 2020). A study by Sorkhabi & Khajeh (2019) 
found that 3D convolutional neural networks (CNNs) achieved up to 95% precision in classifying 
alveolar bone density, providing strong predictive insights into primary stability and 
osseointegration potential. Sorkhabi & Khajeh’s (2019) findings suggest that AI can help evaluate 
implant sites (e.g. predicting bone quality or primary stability) before surgery, aiding the automation 
of implant measurement and planning to measure available bone height/thickness at edentulous 
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sites and detected anatomical constraints like the mandibular nerve canal, as results showed no 
significant difference between the AI’s measurements and experts’ manual measurements in most 
regions (e.g. maxillary premolar/molar sites). Bayrakdar et al. (2021) tested data collected in 2020 
tomeasure alveolar ridge height and width using Diagnocat AI with comparable accuracy to a 
radiologist in many regions.In their trial with 75 CBCT scans (508 implant sites), there was no 
significant difference between AI and expert measurements of bone height in several jaw regions 
(e.g. mandibular premolars, maxillary premolars/molars, p>0.05),suggesting the AI’s linear 
measurements for implant length selection were as reliable as a human in those areas (Figure 10). 
However, the AI’s bone thickness (width) estimates still differed significantly from manual values in 
all tested regions (p<0.001), indicating room for improvement in cross-sectional measurements, 
especially in detecting about mandibular canals, sinuses/fossae and missing-tooth sites of which 
moderate success rates of 72%, 66% and 95% were recorded respectively (Bayrakdaar et al., 2021).  

 

Figure 10: Implant report created using AI (Bayrakdar et al., 2021) 

The rise of smartphones to capture dental images has aided the development of remote AI diagnosis 
systems, as Zhang et al. (2020) proposed a real-time early childhood caries (ECC) detection system 
using a deep learning model on photos taken by parents’ smartphones. A multistage CNN app was 
developed to analyze pictures of children’s teeth for cavities (Figure 11). The model’s ROC curve 
indicated performance not far from that of dentists, detecting most cavities (mAP ~30–47% under 
strict criteria using a lightweight SSD-MobileNet network in comparison to the 77% sensitivity level 
of pediatric dentists. A systematic review on teledentistry for caries detection performed by Etai et 
al. (2016) found it had comparable diagnostic performance to traditional in-person exams, reporting 
high concordance between a dentist’s diagnosis from photos and an actual clinical exam, often with 
sensitivity and specificity in similar range. Steinnmeier et al.’s (2020) study on the accuracy of remote 
diagnoses using intraoral scans also found high concordance between teledentistry and clinical in-
person dental diagnosis, validating the concept of teledentistry hubs where mid-level providers or 
patients send images to specialists for evaluation.The COVID-19 pandemic accelerated AI integration 
into teledentistry particularly for emergency triage, as AI-assisted teleconsultations successfully 
distinguished urgent cases from those manageable via remote guidance with case reports indicated 
that over 50% of patients using tele-triage avoided unnecessary in-person visits, optimizing resource 
allocation while ensuring timely intervention for true emergencies (Ghai, 2020). Acccording to Flores 
et al. (2020), synergy between AI-driven image analysis, mobile-based reporting and teleconsultation 
has reshaped dental care delivery, making oral healthcare more accessible as it integrates into 
national telehealth systems and community-based programs to enhance preventive care, particularly 
in regions with limited access to dental professionals. 

Ghai, S. (2020). Teledentistry during COVID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical 
Research & Reviews, 14(5), 933-935. 
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Figure 11: Smartphone caries diagnosis system (Zhang et al., 2020, p3) 

Stage 5: Next generation dental AI(2021 – present) 

Natural language processing (NLP) for automated dental charting and predictions 

Rapid advancement of AI technologies in recent years has created an era dubbed as 
“robodentistry”and “next-gen dentistry” by Sikri & Sikri (2021). A study by Zhang et al. 
(2021)developed an NLP algorithm to transcribe clinical oral exam recordings into a dental chart, 
reaching 98.4% precision and recall in identifying conditions in oral examinations.NLP models have 
also been applied to electronic dental records text parsing, Chen et al. (2021) created a workflow 
combining deep learning and keyword methods to extract key details (attributes like diagnosis and 
tooth number) from free-text Chinese dental notes (Figure 12). The proposed hybrid model achieved 
high precision (~94%) with reasonable recall (74–82%) for automatically structuring chart data to 
convert dentists’ unstructured notes into coded information (e.g. existing restorations, caries) 
suitable for decision support.Advancement in NLP technologies have facilitated the extraction and 
longitudinal tracking of disease, Patel et al. (2023) developed two automated algorithms to analyze 
clinical notes and classify periodontal disease (PD) progression over time in a large retrospective 
study of 28,908 patients, leveraging Python-based data processing frameworks (including Pandas, 
TensorFlow, and PyTorch), their model systematically categorized patients into three cohorts 
included disease progression, disease improvement and no significant change. Patel et al.’s (2023) 
study demonstrated that AI-driven analysis is efficient for monitoring PD trends across an extended 
timeframe, approximately 34% of patients had up to five years of recorded follow-up data with an 
average of 2.78 periodontal charting entries per patient. Among those with clinician-documented PD 
diagnoses, 72% exhibited no change in disease status, while 13% showed progression and 11% 
demonstrated improvement, confirming AI’s ability to standardize periodontal disease tracking, 
mitigating inconsistencies in manual chart reviews while enabling large-scale epidemiological 
assessments. 

 

Figure 12: NLP deep learning workflow network (Chen et al., 2021) 

Generative AI for synthetic data  

GANs are increasingly adopted for creating synthetic dental images that augment training datasets, 
especially for rare pathologies where real images are scarce, emerging as a key research focus 
according to Yang et al.’s (2024) systematic review. Mehandru et al. (2021) tackled the detection of 
radicular cysts on panoramic radiographs by training a convolutional neural network (CNN) to 
recognize cysts and used GANs to create additional synthetic pano X-rays with and without cyst 
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lesions. The result was a significant boost in accuracy with the CNN trained with GAN-synthesized 
images achieved 95.1% accuracy, compared to 89.3% when trained on real images alone, as GAN 
provided extra examples of rare pathology through generating realistic cyst images for the model to 
learn and extend to other uncommon findings (e.g. tumors, developmental anomalies) to balance 
datasets.Kong et al. (2022) demonstrated a similar benefit for diagnosing chronic maxillary sinusitis 
on dental X-rays, utilizing an auxiliary classifier GAN (AC-GAN) to produce synthetic panoramic 
radiographs exhibiting sinus pathologies. When a deep learning model was trained on the 
combination of real plus GAN-generated sinusitis images, its diagnostic performance improved 
beyond training on real data alone, the synthetic data helped the model detect sinus disease on pans 
more reliably, overcoming the limited availability of expert-labeled caseswhich shows that GANs can 
alleviate long-standing data scarcity issues in dentistry (Kong et al., 2022). Generative AI is also being 
explored for simulation and enhancement tasks. For example, CycleGANs have been used to predict 
post-orthognathic surgery facial changesforpatient with class II and III malocclusion to undergo 
bimaxillary surgery(Andlauer et al., 2021), and to normalize or super-resolve dental imagesusing a 
Pix2Pix-GAN model(Kim et al., 2023). The researchconsensus on synthetic imaging via GANs 
confirms that it is a viable strategy to expand training datasets, improve model robustness on rare 
dental pathologies, creating realistic scenarios for educational or planning purposes (Umer & Adnan, 
2024). This can ultimately lead to AI models that perform better in detecting and diagnosing 
infrequent conditions which human practitionersmight otherwise encounter too seldom to 
confidently recognize (Villena et al., 2024). 

 

 

Figure 13: Flowchart on the automation pipeline of GAN-based synthetic data augmentation (Kong et 
al., 2022) 

 

Robotics in dentistry  

Coined under the term “dentronics” by Grischke et al. (2020), AI assisted robotic systems are 
revolutionizing dental practices by enhancing precision in implant placement and other clinical 
applications, as illustrated in Figure 14. Xia et al.’s (2024) systematic review on robotics application 
in dentistry found that robot-guided implant surgery achieved significantly lower angular deviations 
than dynamic computer-assisted methods, translating to higher placement accuracy. In Wang et al.’s 
(2024) pilot clinical trial of a novel autonomous robot, the mean entry and apex errors were only 
~0.65 mm with ~1.5° angulation deviation, comparable to the best static/dynamic guidance and with 
no adverse events. Additionally, Neugarten’s (2024) evaluated the FDA-cleared Yomi® robotic 
platform in a large series of 273 implants, showing average deviation under 0.2 mm and ~1.4° which 
is substantially more precise than traditional freehand and static guide techniques. The unparalleled 
accuracy and consistency confirm that haptic robot guidance can outperform other implant 
modalities in placing implants exactly as planned, offering practical efficiency benefits such as 
maintaining full surgical field visibility and allowing intraoperative plan adjustments that were 
traditionally impractical with static guides (Yang et al., 2024). Overall, empirical findings suggest that 
AI-driven robots can improve implant outcomes and workflow, potentially becoming a new standard 
for safe, exact implantology. 
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Figure 14: Dental practices utilizing robotics (Grischke et al., 2020, p3) 

CONCLUSION 

This study chronologicallytraced the evolutionary trajectory of AI developments and applications 
dentistry, delineating its transformation from rudimentary rule-based expert systems to 
sophisticated generative AI and robotic-assisted interventions under five stages. The findings reflect 
the paradigm shift AI has induced in dental diagnostics, treatment planning and clinical decision-
making. Early implementations in forms of expert systems and CAD/CAM technology provided the 
foundational computational infrastructure that later facilitated advanced automation. With the 
integration of machine learning (ML) in the early 2000s, AI applications began exhibiting diagnostic 
superiority over human practitioners in radiographic analysis, particularly in caries detection and 
cephalometric landmark identification. This momentum accelerated in the 2010s as deep learning 
(DL) architectures, particularly convolutional neural networks (CNNs), redefined precision in lesion 
detection, occlusal analysis and orthodontic assessment, attaining human-comparable and in certain 
domains, superior diagnostic capabilities.The period from 2016 onward witnessed AI’s expansion 
beyond diagnostic imaging into predictive analytics, electronic health record (EHR)-driven risk 
stratification and remote teleconsultation frameworks, enhancing accessibility and clinical efficiency. 
The proliferation of FDA-approved AI-driven diagnostic tools such as Diagnocat further catalyzed 
mainstream clinical adoption. More recently, NLP algorithms have emerged as a transformative force 
in dental informatics, automating charting procedures and mitigating administrative burdens. 
Concurrently, generative adversarial networks (GANs) have demonstrated their potential in 
synthetic data augmentation, effectively addressing the longstanding data scarcity challenge for 
training AI models on rare dental pathologies. The most recent phase (2021–present) has ushered in 
AI-assisted robotic systems with platforms such as Yomi® setting unprecedented benchmarks for 
precision in implantology and surgical workflows, marking a transition toward semi-autonomous 
and data-driven procedural execution.Despite these remarkable strides, formidable challenges 
persist. Algorithmic bias as exacerbated by dataset homogeneity raises concerns regarding 
diagnostic disparities and the equitable distribution of AI’s benefits across diverse populations. The 
inherent opacity of deep learning models, commonly referred to as the “black-box” problem, 
complicates clinical accountability and necessitates the development of explainable AI (XAI) 
methodologies. Furthermore, regulatory inertia and ethical ambiguities surrounding AI-driven 
decision-making represent the urgent need for robust legal frameworks that delineate liability and 
ensure clinician oversight in AI-assisted treatment modalities. 

Recommendations and implications for future studies  

Future research must prioritize the development of ethical AI frameworks that emphasize fairness, 
transparency and bias mitigation in AI-driven dental applications. The establishment of 
geographically and demographically diverse datasets is imperative to enhance model generalizability 
and preempt diagnostic disparities. Moreover, interdisciplinary collaborations among AI engineers, 
clinical practitioners, scientific researchers, patientsand regulatory bodies should focus on 
standardizing validation protocols to ensure AI systems meet rigorous empirical benchmarks before 
widespread implementation.Explainable AI (XAI) should be further explored to enhance 
interpretability, fostering clinician trust in AI-driven diagnostics and ensuring transparency in 
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algorithmic decision-making. Additionally, AI governance mechanisms should be formulated to 
delineate legal accountability in cases of misdiagnosis or procedural failure. Ethical AI decision-
making models should be developed to guide automated treatment recommendations while 
maintaining human oversight as a safeguard against algorithmic fallibility.Moreover, the 
psychological and professional implications of AI adoption in dentistry warrant further investigation. 
Studies should explore how AI integration influences clinical autonomy, decision-making paradigms 
and the dentist-patient relationship. Research into the long-term impact of AI-driven automation on 
workforce dynamics including the potential deskilling of practitioners and shifts in clinical roles is 
also crucial. Addressing these multifaceted challenges will be instrumental in ensuring that AI’s 
integration into dentistry remains not only technologically progressive but also ethically sound, 
clinically reliable and aligned with patient-centered care principles. 
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