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Climate change is an increasingly pressing global threat, with variations in 
temperature, shifts in precipitation patterns, and the intensification of extreme 
weather events directly impacting agricultural productivity. This is particularly 
evident in African countries like Morocco, where the agricultural sector is 
heavily dependent on climatic conditions. The primary objective of this 
research is to assess the repercussions of climate change on Moroccan 
agriculture through an econometric analysis utilizing an ARDL model. This 
model is applied to data covering the period from 1990 to 2022, comprising 32 
observations. By examining the effects of climatic variations on agricultural 
performance, the study also provides forward-looking projections based on 
two IPCC scenarios extending to the year 2100. The findings highlight the 
significant negative impacts of climate change on the productivity and 
resilience of Morocco’s agricultural sector. 

INTRODUCTION  

Today, international organizations, expert groups, policymakers, and ordinary citizens are all 
increasingly concerned about the harmful effects of climate change. According to the World Health 
Organization (WHO), the impacts of climate change on human health are manifold, ranging from 
deaths and illnesses caused by extreme weather events such as heatwaves, storms, and floods to the 
rise in zoonotic diseases and those transmitted through water and food. 

The Intergovernmental Panel on Climate Change (IPCC, 2007) highlights that climate change is likely 
to impact developing countries earlier and more severely. These nations rely heavily on climate-
sensitive sectors such as agriculture, forestry, fisheries, and tourism, while also grappling with 
poorer public health and fewer, often lower-quality public services. Africa is among the most affected 
regions, with Morocco standing out as a particularly vulnerable case. 

In another context, industries play a critical role in global greenhouse gas (GHG) emissions, primarily 
in the form of carbon dioxide, methane, and nitrous oxide. According to the IPCC, direct industrial 
emissions accounted for approximately 21% of global emissions in 2010. These emissions mainly 
arise from fossil fuel combustion to power factories and chemical processes such as cement and 
petrochemical production. Industries also contribute indirectly to emissions due to their high 
demand for electricity and transportation (IPCC, 2014). 

Greenhouse gas (GHG) emissions from industrial activities amplify the natural greenhouse effect, 
leading to a rise in global temperatures. According to the United Nations Framework Convention on 
Climate Change (UNFCCC), industrial emissions, combined with those from other sectors, are major 
drivers of the increase in average global temperatures. This warming has severe consequences, 
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including rising sea levels, more frequent and intense heatwaves, and disruptions to climatic patterns 
(UNFCCC, 2021). 

These impacts disproportionately affect low-income countries and vulnerable populations, as they 
often face extreme environmental conditions and have fewer resources to adapt to climate change 
(Céline Guivarch, 2021). Within these communities, the poorest individuals and women are 
frequently the hardest hit. They suffer the most from declining agricultural productivity, rising food 
prices, and extreme weather events, which exacerbate their economic and social vulnerabilities 
(Goar, 2024). 

In African countries, climate change significantly undermines livelihoods by reducing income levels 
and worsening food security. In Morocco, agriculture plays a pivotal role in the nation's economic 
and social development, contributing substantially to GDP, employment, and efforts to combat 
poverty and food insecurity (Tazigh, 2020). However, the sector remains highly vulnerable to climate 
variability. Factors such as droughts, rising temperatures, and unpredictable rainfall patterns have 
led to a decline in agricultural productivity, highlighting the sector’s fragility in the face of climate 
change. 

In this complex and uncertain context, the present study seeks to address the following question: 
What is the impact of climate change on Morocco's agricultural sector? To answer this, the study 
adopts a methodological approach that begins with the formulation of hypotheses, which are 
subsequently tested using econometric techniques. Specifically, two hypotheses are proposed: 

Hypothesis 1: Climate change significantly reduces agricultural productivity in Morocco, primarily 
due to rising temperatures and precipitation variability. 

Hypothesis 2: The industrial sector in Morocco negatively impacts the agricultural sector. 

This article is structured as follows. First, it provides a theoretical review by defining the concept of 
climate change and exploring its causes. Next, it examines existing studies that have investigated the 
effects of climate change on Moroccan agriculture. Finally, an empirical analysis is conducted using 
the ARDL (AutoRegressive Distributed Lag) model to assess the impact of climate change on 
agricultural productivity. 

LITERATURE REVIEW 
2.1 Definition and Causes of Climate Change 

According to the Intergovernmental Panel on Climate Change (IPCC), climate change is defined as "a 
change in the state of the climate that can be identified through changes in the mean and/or 
variability of its properties, and which persists over an extended period." Climate, in turn, refers to 
the distribution of various meteorological variables over a defined period. Thus, climate change 
represents a sustained shift in both the average and variability of climatic properties (Nicolas 
Lancesseur, 2020). 

This phenomenon can arise from natural causes, such as variations in solar activity or Earth's orbital 
cycles. However, it is now primarily attributed to human activities, particularly the emission of 
greenhouse gases (GHGs) from fossil fuel combustion, deforestation, and intensive agriculture (IPCC, 
2021). 

GHG emissions are the main driver of current global warming. These gases—primarily carbon 
dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) enhance the natural greenhouse effect by 
trapping heat radiated from Earth's surface. Fossil fuel combustion for energy production, 
transportation, and industry constitutes the primary source of these emissions. For example, in 2020, 
fossil fuels accounted for 75% of global CO₂ emissions (International Energy Agency, 2021). 

In this context, the study by Kerfal et al. (2024) highlights the role of greenhouse gas (GHG) emissions, 
which remain a significant driver of climate change, in the degradation of environmental quality. This 
deterioration is expected to have harmful effects on the agricultural sector, further exacerbating its 
vulnerabilities to climatic variability and environmental stress. 

Deforestation is another significant contributor to climate change as it diminishes the ability of 
forests to absorb CO₂. Trees act as natural carbon sinks, storing large amounts of CO₂. When they are 
cut down or burned, this stored carbon is released into the atmosphere. Deforestation, often driven 
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by agricultural expansion, logging, or urbanization, substantially contributes to global emissions. 
According to FAO (2020) report, deforestation and land-use changes are responsible for about 10% 
of global CO₂ emissions. 

Agriculture also plays a significant role in GHG emissions, particularly through intensive livestock 
farming, which generates high levels of methane and nitrous oxide—both potent greenhouse gases. 
Methane is largely emitted from the digestive systems of ruminants (enteric fermentation) and from 
the decomposition of organic matter in rice paddies. Nitrous oxide is released from the excessive use 
of chemical fertilizers. According to the Food and Agriculture Organization (FAO), the agricultural 
sector contributes approximately 18% of global GHG emissions, making it one of the most polluting 
sectors globally. 

The Impact of Climate Change on Agriculture in Morocco 

Agriculture remains a critical pillar of Morocco's social and economic structure. However, the sector's 
reliance on climatic stability makes it highly vulnerable to climate change. Predominantly focused on 
cereal cultivation, Moroccan agriculture depends heavily on rainfall, and its fragility is evident in both 
its social implications for rural and mountainous populations and its broader economic impact. 
Climate change is expected to directly and indirectly affect economic growth and employment 
through declining agricultural yields. 

Using the Cropwat model to assess rainfed winter cereals, projections indicate a significant drop in 
yields. More frequent droughts could lead to a 30% decline in domestic production. Additionally, 
vegetable yields are projected to decrease by as much as 40% by 2030 (Arrus, 2006). 

El Mourid et al. (2014) highlight the potentially severe consequences of climate change on Moroccan 
agriculture, particularly for staple crops like wheat and barley. Their estimates suggest that yields 
may decrease by 15–25% by 2050 due to rising temperatures, reduced precipitation, and increased 
climatic variability. They also predict an intensification of drought periods, particularly in semi-arid 
regions of the country where water resources are already scarce. 

Rainfed crops, such as cereals and legumes, are especially vulnerable as they directly depend on 
rainfall. Research by Karrou (2016) indicates that precipitation variability significantly reduces the 
yields of rainfed crops, with agricultural losses reaching up to 30% during drought years. This 
underscores the pressing need for adaptive strategies to mitigate the impact of climate change on 
Morocco's agricultural sector. 

The combination of higher temperatures and reduced rainfall has significantly diminished water 
availability for irrigation, exacerbating water stress in agricultural regions. These climatic conditions 
not only restrict crop growth but also increase the risk of diseases and pest infestations. According 
to Bouazzama (2018), yields of water-intensive crops such as maize and citrus could decrease by 20–
35% in a warming scenario without adaptive measures. 

Driouech (2019) highlights the growing frequency of heatwaves, which impose thermal stress on 
crops. Key cereal crops like wheat and barley, which are staples of Moroccan agriculture, are 
particularly vulnerable to rising temperatures. These heatwaves accelerate the crops’ growth cycles, 
reducing yields, especially in major agricultural zones such as the Saïss plains and the Souss-Massa 
regions. 

Woillez (2019) forecasts that unmitigated declines in precipitation will cause a significant drop in 
cereal yields by 2050. While irrigation could potentially boost yields even in increasingly arid 
conditions, Morocco may face challenges in offsetting rainfall deficits through irrigation alone. This 
limitation is likely to be accompanied by a marked increase in the frequency of heat and drought 
periods. Non-irrigated agriculture is expected to experience severe impacts, with wheat and barley 
yields potentially falling by up to 40% in some areas. Additionally, water demands for crops are 
projected to rise substantially, necessitating more intensive irrigation. However, river flows may 
decrease by over 30%, further straining water resources. 

Soil erosion presents another major challenge to Moroccan agriculture. Over 8.7 million hectares of 
arable land are affected by erosion, with losses ranging from 500 tons of soil per square kilometer in 
the Middle Atlas to over 5,000 tons in the Rif. This degradation significantly undermines agricultural 
productivity. The causes of erosion are multifaceted, including a combination of natural and human 
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factors such as irregular rainfall, overgrazing, sparse vegetation, excessive wood harvesting, and 
inadequate agricultural practices (FAO, 2017). 

3. RESEARCH METHODOLOGY 

This study employs an econometric approach using the ARDL (AutoRegressive Distributed Lag) 
model to assess the impact of climate change on Morocco's agricultural sector. The choice of this 
model is driven by two key considerations. First, it allows for the analysis of the relationship between 
the dependent variable and independent variables over a period from 1990 to 2022, encompassing 
32 observations. This timeframe was selected based on the availability of historical data for several 
variables used in the study. Second, the ARDL model enables forecasting based on the Representative 
Concentration Pathway (RCP) scenarios developed by the IPCC. 

The ARDL Model 

The ARDL model is an econometric estimation method widely used to analyze both long-term and 
short-term relationships between variables. It is particularly effective when the variables are a mix 
of stationary and non-stationary series, provided they are integrated at order 0 or 1 (Pesaran, M. H., 
& Shin, Y., 1997). 

The general form of an ARDL model is expressed as: 

Yt =  α0 + ∑ βiYt−i

p

i=1

+ ∑ γjXt−j

q

j=0

+ εt 

Where:𝑌𝑡:The dependent variable at time t; 𝑋𝑡−𝑗 : Lagged explanatory variables; 𝛼0 : Constant term ; 

𝛽𝑖et 𝛾𝑗  : Coefficients of the lagged terms ; p, q : Lag orders for the dependent and independent 

variables, and𝜀𝑡 : Error term 

Implementing an ARDL model involves several key steps to ensure the validity of the results, whether 
analyzing short-term effects or the long-term relationships between variables. 

The first step is to determine the order of integration of the variables using stationarity tests such as 
the Augmented Dickey-Fuller (ADF) test or the Phillips-Perron (PP) test. These tests identify whether 
the variables are stationary at level I(0)or integrated of order I(1). This step is crucial, as the ARDL 
model requires variables to be either I(0), I(1), or a mix of both, but not I(2). 

Once stationarity is confirmed, the optimal lag orders (p and q) for the dependent and explanatory 
variables must be determined. This step typically relies on information criteria such as the Akaike 
Information Criterion (AIC), the Bayesian Information Criterion (BIC), or the Hannan-Quinn Criterion 
(HQC). Selecting the correct lags ensures that the model captures the dynamic relationships 
effectively. 

The ARDL model is estimated using the Ordinary Least Squares (OLS) method. The estimation 
involves deriving coefficients for the lagged terms of the dependent and explanatory variables. These 
coefficients provide insights into the short-term effects of changes in the explanatory variables on 
the dependent variable. 

To examine the existence of a long-term relationship between variables, the bounds testing approach 
for cointegration is performed. This test evaluates the null hypothesis that no cointegration exists 
(H0: no cointegration). The F-statistic is compared against two critical bounds: 

A lower bound assumes all variables are I(0). 

An upper bound assumes all variables are I(1). 

If the F-statistic exceeds the upper bound, the null hypothesis is rejected, confirming the presence of 
cointegration. 

Once cointegration is established, long-term coefficients are derived from the estimated parameters 
of the model. These coefficients represent the permanent effects of changes in explanatory variables 
on the dependent variable. In contrast, short-term effects are directly observed from the model as 
coefficients associated with the differenced terms of the variables. 
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The final step is to evaluate the model’s quality using diagnostic tests: 

Breusch-Godfrey Test: Checks for the absence of residual autocorrelation. 

Jarque-Bera Test: Assesses the normality of residuals. 

Stability Tests (CUSUM and CUSUMSQ): Ensures that the estimated coefficients remain stable over 
time. 

These diagnostic checks validate the reliability of the results and help identify potential weaknesses 
in the model. By following these steps, the ARDL model provides robust insights into both the short-
term and long-term dynamics of the variables under study. 

Data Used 

In this study, the agricultural value added serves as the dependent variable to be explained through 
climate changerelated variables. 

To analyze the impact of climate change, three key explanatory variables were selected: temperature, 
precipitation, and industrial value added. Temperature plays a crucial role in climate dynamics, as 
rising average temperatures trigger cascading effects such as glacier melt and sea-level rise. 
Precipitation, on the other hand, serves as an indicator of shifts in hydrological patterns, which can 
result in droughts or floods. Lastly, industrial value added represents the intensity of economic 
activity, which is often closely linked to greenhouse gas emissions. Together, these variables enable 
a comprehensive exploration of the intricate interactions between human activities and global 
environmental changes. 

The selected indicators and their respective data sources are presented in the table below, providing 
a clear overview of the variables and their origins for further analysis. 

Table 1: Indicators Used 

Indicators Description Sources 
AGRI Agricultural Value Added as a Percentage of GDP World Bank 
PRECIP Average Annual Precipitation (in mm) World Bank 
TEMP Average Annual Surface Air Temperature in Morocco 

(in Degrees Celsius) 
World Bank 

INDUS Industrial Value Added as a Percentage of GDP World Bank 
Source : Authors 

The following analysis presents the trends of the variables during the study period from 1990 to 
2022. 

Figure 1 illustrates the evolution of agricultural value added (AGRI) from 1990 to 2022, showing an 
overall downward trend. In the early 1990s, agricultural value added reached high levels, averaging 
around 18%. However, it gradually declined throughout the late 1990s, stabilizing around 12%. From 
this point onward, fluctuations became more moderate, ranging between 10% and 12%, with 
occasional slight increases, particularly in 2015 and 2020. 

This decline can be attributed to various factors, including deteriorating climatic conditions, reduced 
agricultural productivity, and structural changes within the sector. These findings emphasize the 
need to invest in sustainable agricultural practices and adaptive strategies to enhance the sector's 
contribution to the economy and its resilience to environmental challenges. 

 

Figure 1: Evolution of the AGRI variable between 1990 and 2022 as a % of GDP 

Source: Developed using World Bank data, Eviews 10.0 output 
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Figure 2 depicts the annual precipitation (PRECIP) trends between 1990 and 2022, characterized by 
significant variability. Certain years, such as 1996, 2008, and 2017, recorded high levels of 
precipitation, exceeding 500 mm, 460 mm, and 400 mm respectively. In contrast, other years 
experienced substantial declines, with precipitation dropping to approximately 200–240 mm, 
indicative of drought periods. 

This alternating pattern of wet and dry years highlights considerable fluctuations, likely influenced 
by climatic factors such as natural cycles and the broader impacts of climate change. These findings 
underscore the importance of understanding precipitation variability to inform water management 
strategies and agricultural planning. 

 

Figure 2: Evolution of the PRECIP variable between 1990 and 2022 in mm 

Source: Developed using World Bank data, Eviews 10.0 output 

Figure 3 illustrates the trend in annual average temperatures (TEMP) from 1990 to 2022, showing a 
general upward trajectory. In the early 1990s, temperatures hovered around 17°C, with occasional 
fluctuations. However, from the late 1990s onward, a noticeable progressive increase is observed, 
culminating in significant peaks in 2016 and 2022, where temperatures reached nearly 19.2°C. 

This rising trend likely reflects the effects of global warming, marked by a steady increase in average 
global temperatures. While year-to-year variations suggest the influence of natural climatic 
fluctuations, the overall upward trend underscores potential impacts on the environment, 
agriculture, and local ecosystems. These findings highlight the need for strategies to mitigate and 
adapt to the long-term consequences of rising temperatures. 

 

Figure 3: Evolution of the TEMP variable between 1990 and 2022, in degrees Celsius 

Source: Developed using World Bank data, Eviews 10.0 output 

Figure 4 illustrates the trend in industrial value added (INDUS) as a percentage of GDP over the 
period 1990–2022. In the early 1990s, the industrial sector's share was relatively high, fluctuating 
around 26–27%. However, a significant decline occurred toward the late 1990s, dropping to 
approximately 23%. 

Following this dip, the industrial sector experienced moderate fluctuations, with sporadic decreases, 
such as during the global financial crisis in 2008. A gradual recovery began after 2010, peaking near 
26% in the mid-2010s. Nevertheless, a slight decline was observed toward the end of the study 
period. 
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This pattern may be attributed to economic factors such as structural shifts, economic crises, or the 
gradual diversification of the economy away from industry. Understanding these underlying 
dynamics is essential to address the challenges and leverage the opportunities faced by the industrial 
sector in a rapidly evolving global economy. 

 

Source: Developed using World Bank data, Eviews 10.0 output 

Figure 4: Evolution of the INDUS variable between 1990 and 2022, as a % of GDP 

RESULTS AND DISCUSSION 

Descriptive Statistics 

Table 2 provides an overview of the key descriptive statistics for the variables studied during the 
period 1990 to 2022. These statistics include the mean, median, standard deviation, coefficient of 
variation, and the maximum and minimum values for each variable. 

This summary offers a comprehensive snapshot of the data's distribution and variability, providing 
a foundation for further analysis and interpretation of the relationships between the variables under 
investigation. 

Table 2: Descriptive Statistics 

 

Source: Authors' Calculations, Eviews 10.0 Output 

The table presents descriptive statistics for four variables: AGRI (agricultural value added), INDUS 
(industrial value added), PRECIP (precipitation), and TEMP (temperature), based on a dataset 
comprising 33 observations. The average precipitation (PRECIP) is 311.22 mm, while the mean 
temperature (TEMP) is 18.13°C. However, the standard deviations highlight varying levels of 
dispersion: PRECIP exhibits the highest variability (76.56), whereas TEMP is the most stable (0.49). 
The medians, which are close to the means for certain variables, suggest a relatively balanced 
distribution. Nonetheless, the large difference between the minimum (221.98) and maximum 
(555.05) values for PRECIP reflects significant variability. 

In terms of distribution, skewness coefficients indicate that AGRI and PRECIP have positive 
skewness, suggesting that their values are concentrated toward the lower end of the range, while 
TEMP displays slight negative skewness. The kurtosis coefficient reveals that AGRI (4.20) and 

Variables AGRI INDUS PRECIP TEMP 

 Mean  12.47020  24.76128  311.2236  18.13091 

 Median  11.96208  25.16400  285.9900  18.18000 

 Maximum  18.43998  27.59814  555.0500  19.01000 

 Minimum  9.875247  22.25957  221.9800  16.99000 

 Std. Dev.  2.130989  1.435634  76.55975  0.495507 

 Skewness  1.353860 -0.037519  1.363575 -0.649508 

 Kurtosis  4.199965  2.083776  4.806499  3.197983 

 Jarque-Bera  12.06104  1.162009  14.71358  2.374132 

 Probability  0.002404  0.559336  0.000638  0.305115 

 Sum  411.5165  817.1223  10270.38  598.3200 

 Sum Sq. Dev.  145.3156  65.95344  187564.7  7.856873 
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PRECIP (4.81) have distributions that are more peaked than normal, indicating the presence of 
extreme values. 

Correlation Analysis 

The following table illustrates the correlation between the variables in the model. This analysis helps 
identify the relationships and potential dependencies between the key variables, providing a basis 
for further econometric analysis. 

Table 3: Correlation Coefficient Between the Variables Studied 

 AGRI  INDUS  PRECIP  TEMP  

AGRI  1.000000    

INDUS  0.327587 1.000000   

 (0.0627) -----    

PRECIP  0.272139 -0.092849 1.000000  

 (0.1255) (0.6073) -----   

TEMP  -0.623629 -0.224272 -0.226858 1.000000 

 (0.0001) (0.2096) (0.2042) -----  
Source: Authors' Calculations, Eviews 10.0 Output 

Note: (.) Probability Value 

The results indicate that the most notable correlation is between AGRI (agricultural value added) and 
TEMP (temperature), with a negative and significant coefficient of -0.623629 (p = 0.0001). This 
strong inverse relationship suggests that higher temperatures negatively affect agricultural 
performance, a trend commonly observed in unfavorable climatic conditions. 

In contrast, the correlations between AGRI and INDUS (industrial value added) at 0.327587 (p = 
0.0627) and AGRI and PRECIP (precipitation) at 0.272139 (p = 0.1255) are weak and statistically 
insignificant. These findings indicate that, within this sample, these variables have a less direct 
influence on agricultural outcomes. 

Stationarity Analysis 

Table 4 presents the results of the stationarity tests conducted on the variables included in the model. 
These tests are essential to determine the integration order of the variables and to ensure the 
appropriateness of the econometric techniques applied in the analysis. 

Table 4: Order of Integration of the Variables Studied 

Variables t_statistic 

I(0) 

t_statistic  

I(1) 

Décision 

AGRI 0.1503 0.0000 I(1) 

TEMP 0.9318 0.0000 I(1) 

PRECIP 0.0004 ---- I(0) 

INDUS 0.0386 ---- I(0) 

Source: Authors' Calculations, Eviews 10.0 Output 

The unit root test results indicate that the variables PRECIP and INDUS are stationary at the level of 
integration order 0 (I(0)). In contrast, the other variables, AGRI and TEMP, become stationary only 
after first differencing, implying they are integrated of order 1 (I(1)). 

Optimal ARDL Model and Its Estimation 

To identify the most appropriate ARDL model, one that yields statistically significant results with a 
minimal number of parameters, the Akaike Information Criterion (AIC) was employed. Figure 5 
illustrates the optimal model selected based on this criterion, ensuring the balance between model 
complexity and explanatory power. 
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Figure 5: Graphical AIC Values, Top 20 Models 

Source: Authors' Analysis Using Eviews 10.0 

Based on the data in Figure 5 and the AIC criterion, the optimal ARDL model is identified as ARDL (1, 
1, 1, 3), as it achieves the lowest AIC value. This model is considered statistically significant and 
provides the most reliable results. The estimation of the selected ARDL (1, 1, 1, 3) model, deemed the 
most suitable for the analysis, is presented in the table below. 

Table 5: Estimation Results of the Coefficients 

Variables Coefficients Std. Error t-Statistic Prob.* 
AGRI(-1) -0.108020 0.156159 -0.691732 0.4971 
INDUS -0.242088 0.197273 -1.227176 0.2340 
INDUS(-1) 0.719844 0.195231 3.687152 0.0015 
PRECIP 0.008487 0.003030 2.801023 0.0110 
PRECIP(-1) 0.006871 0.003124 2.199024 0.0398 
TEMP -0.531623 0.503435 -1.055990 0.3036 
TEMP(-1) -0.669103 0.564753 -1.184772 0.2500 
TEMP(-2) -1.119820 0.540325 -2.072493 0.0514 
TEMP(-3) -1.704468 0.540579 -3.153041 0.0050 
C 69.81049 16.44614 4.244796 0.0004 
R-squared 0.813601 Mean dependent var 12.16264 
Adjusted R-squared 0.729722 S.D. dependent var 1.928204 
S.E. of regression 1.002440 Akaike info criterion 3.103953 
Sum squared resid 20.09772 Schwarz criterion 3.571018 
Log likelihood -36.55929 Hannan-Quinn criter. 3.253371 
F-statistic 9.699660 Durbin-Watson stat 1.943888 
Prob(F-statistic) 0.000014  

Source: Authors' Calculations Using Eviews 10.0 

Cointegration Test 

The cointegration test developed by Pesaran et al. (2001) requires the prior estimation of the ARDL 
model. The calculated statistic, corresponding to Fisher's F-value, is then compared to the critical 
bounds to determine the presence of a long-term relationship between the variables. 

Table 6: Cointegration Test Results 

F-Bounds Test Null Hypothesis: No levels 
relationship 

Test Statistic Value Signif. I(0) I(1) 
F-statistic  10.52238 10% 2.37 3.2 
K 3 5% 2.79 3.67 

2.5% 3.15 4.08 
1% 3.65 4.66 

Source: Authors' Calculations Using Eviews 10.0 

The analysis of the table above indicates that the results of the bounds cointegration test confirm the 
existence of a cointegrated relationship. Specifically, the calculated F-statistic of 10.52238 exceeds 
the upper critical bound at all significance levels (10%, 5%, 2.5%, and 1%). This provides strong 
evidence of a long-term relationship between the variables. 
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Short-Term Dynamics, Adjustment Coefficient, and Long-Term Coefficients 

Table 7 presents the estimation results for the short-term relationship. The adjustment coefficient, 
also referred to as the error correction term, is negative and statistically significant (-1.108020). This 
finding indicates the presence of an error correction mechanism, confirming the existence of a long-
term (cointegrated) relationship between the studied variables. This mechanism ensures that short-
term deviations are corrected over time, aligning with the established long-term equilibrium. 

Table 7: Estimation Results of the Short-Term Coefficients 

Variables Coefficient
s 

Std. Error t-Statistic Prob.  

D(INDUS) -0.242088 0.165859 -1.459607 0.1599 
D(PRECIP) 0.008487 0.002090 4.061879 0.0006 
D(TEMP) -0.531623 0.406710 -1.307130 0.2060 
D(TEMP(-1)) 2.824288 0.617703 4.572241 0.0002 
D(TEMP(-2)) 1.704468 0.465259 3.663479 0.0015 
CointEq(-1)* -1.108020 0.139449 -7.945708 0.0000 
R-squared 0.813743  Mean dependent var -

0.12370
7 

Adjusted R-squared 0.774940  S.D. dependent var 1.92893
8 

S.E. of regression 0.915098  Akaike info criterion 2.83728
6 

Sum squared resid 20.09772  Schwarz criterion 3.11752
5 

Log likelihood -36.55929  Hannan-Quinn criter. 2.92693
7 

Durbin-Watson stat 1.943888  
Source: Authors' Calculations Using Eviews 10.0 

Meanwhile, Table 8 presents the estimation results of the long-term model. These results provide 
insights into the persistent effects of the explanatory variables on the dependent variable, 
highlighting the dynamics of the long-term relationships within the study. 

Table 8: Estimation Results of the Long-Term Coefficients 

Variables Coefficients Std. Error t-Statistic Prob.  
INDUS 0.431180 0.147317 2.926881 0.0083 
PRECIP 0.013861 0.003209 4.319437 0.0003 
TEMP -3.632619 0.540068 -6.726231 0.0000 
C 63.00472 11.44477 5.505109 0.0000 

Source: Authors' Calculations Using Eviews 10.0 

The analysis reveals several key insights into the long-term relationships between the variables: 

Precipitation, with a coefficient of 0.013861 and a p-value of 0.0003, has a positive and statistically 
significant effect on agricultural value added, although the magnitude of its impact remains 
moderate. Water plays a critical role in agricultural productivity, especially in regions where farming 
and livestock rely on natural rainfall. Increased precipitation enhances crop yields and overall sector 
performance. However, the extent of this effect can vary depending on the availability of irrigation 
infrastructure, agricultural practices, and the adaptability of systems to climatic variability. 

Conversely, the temperature variable (TEMP) exhibits a strong and highly significant negative 
relationship with agricultural value added, with a coefficient of -3.632619 and a significant p-value. 
Elevated temperatures induce thermal stress on crops and livestock, reducing agricultural yields and 
intensifying water shortages. Additionally, high temperatures contribute to extreme climatic events 
such as droughts, further exacerbating the sector's vulnerability. These findings underscore the 
urgent need for adaptive strategies, such as introducing heat-resistant crops and improving 
irrigation systems, to mitigate the adverse effects of climate change on agriculture. 

The industrial value-added variable (INDUS) shows a positive and statistically significant 
relationship with agricultural value added, with a coefficient of 0.431180 and a p-value of 0.0083. 
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This indicates that industrial development indirectly supports agriculture. By supplying improved 
equipment, inputs, and infrastructure, industrial activities enhance the efficiency and productivity of 
agricultural operations. This synergy between the industrial and agricultural sectors is particularly 
advantageous in contexts where they are closely linked, promoting sustainable and balanced 
economic growth. 

These results highlight the multifaceted nature of the relationships between climatic and economic 
factors and the agricultural sector, emphasizing the need for targeted interventions to ensure 
resilience and growth. 

Model Validation 

The model validation phase aims to assess the reliability of the estimated model using the following 
diagnostic tests: the autocorrelation test for errors, the heteroscedasticity test, the normality test for 
residuals, and the model stability test. These tests are described below. 

The ARCH test was applied to examine the homoscedasticity of residuals. Acceptance of the null 
hypothesis indicates that the residuals are homoscedastic. Table 9 presents the results of this test, 
which confirm that the null hypothesis of homoscedastic residuals is accepted at the 5% significance 
level. The p-value, being greater than 5% (0.677 > 5%), supports this conclusion. 

These results ensure that the residuals do not exhibit heteroscedasticity, reinforcing the model’s 
validity for further analysis. 

Table 9: ARCH Test on Residuals 

F-statistic 0.161852  Prob. F(1,27) 0.6906 

Obs*R-squared 0.172805  Prob. Chi-Square(1) 0.6776 

Source: Authors' Calculations Using Eviews 10.0 

To check whether the residuals follow a normal distribution, the Jarque-Bera test was conducted. 
The p-value for this test is 0.850, which is significantly higher than the 0.05 threshold. Consequently, 
the null hypothesis of normality in the residuals is accepted at the 5% significance level (Figure 10). 

This result confirms that the residuals are normally distributed, further validating the robustness of 
the estimated model. 

 

Figure 6: Jarque-Bera Test on Residuals 

Source: Authors' Calculations Using Eviews 10.0 

To assess the absence of error autocorrelation, the Breusch-Godfrey test was applied. The results 
indicate that the p-value associated with the test is greater than the critical threshold of 5%. 
Therefore, it can be concluded that the residuals do not exhibit autocorrelation (Table 10). 

This finding reinforces the validity of the model and its assumptions, ensuring that the error terms 
are independent and do not compromise the reliability of the estimates. 

Table 10: Test for Absence of Error Autocorrelation 

F-statistic 0.579636  Prob. F(2,18) 0.5702 
Obs*R-squared 1.815212  Prob. Chi-Square(2) 0.4035 

Source: Authors' Calculations Using Eviews 10.0 
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To evaluate the stability of the model, the CUSUM of squares test is particularly relevant. This test, 
based on the cumulative sum of the squares of recursive residuals, operates under the null hypothesis 
that the relationship is stable. The results fall within two boundary lines representing the confidence 
interval, indicating that the estimated model is stable, as the curve remains within the dashed 
corridor (Figure 7). 

This outcome confirms that the coefficients are consistent over time, reinforcing the reliability of the 
model's estimations. 

Figure 7: CUSUM and CUSUMSQ Stability Test 
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Source: Authors' Calculations Using Eviews 10.0 

Impact Projections 

Forecasting Accuracy 

After confirming the absence of structural changes in the data used for the study, the Theil statistic 
was employed to evaluate the forecasting capability of the model during the analysis period. The 
results of this evaluation are illustrated in Figure 8. 

This assessment ensures the model’s reliability in projecting the impacts of the studied variables, 
providing a solid basis for informed decision-making. 

 

Figure 8: Theil Forecast Test 

Source: Authors' Calculations Using Eviews 10.0 

The Theil coefficient is 0.0336, which is less than 1 and close to zero, while the bias proportion (BP) 
equals 0. Additionally, the variance proportion, at 0.0538, is near zero, and the covariance proportion, 
at 0.9461, is close to 1. These results indicate that the model demonstrates strong predictive accuracy 
during the study period. Consequently, the model’s results can be confidently used for policy analysis, 
future evaluations, and achieving set objectives. 

Projections Based on RCP Scenarios 

The table below presents the various Representative Concentration Pathways (RCP) scenarios 
developed by the IPCC. These pathways illustrate different assumptions about greenhouse gas 
emissions, their atmospheric concentrations, and their impacts on global climate through 
temperature variations. 

By integrating these scenarios into this study, we aim to analyze climatic dynamics under different 
conditions and better understand the potential implications of future climate change. These insights 
provide a foundation for informed decision-making and strategic planning in response to diverse 
climate scenarios. 
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Table 11: Climate Change Scenarios (IPCC, 2014) 

 The RCP2.6 Scenario The RCP8.5 Scenario 

Temperature 
Variation 

+2°C +4,5°C 

Source: Authors based on the IPCC 2014 Report 

The graph below illustrates a decline in agricultural value added up to 2100 under both scenarios, 
RCP2.6 and RCP8.5. 

In the RCP2.6 scenario, which assumes significant efforts to reduce greenhouse gas emissions, the 
decline in agricultural value added is noticeable, reflecting the substantial impact of climate change. 
Conversely, under the RCP8.5 scenario, characterized by high emissions with no mitigation actions, 
the decrease is significantly more pronounced. 

This stark contrast highlights the exacerbated effects of climate change in a context of inaction, 
posing a greater threat to the sustainability of the agricultural sector. These findings emphasize the 
critical importance of implementing mitigation strategies to safeguard agricultural resilience and 
productivity in the face of a changing climate. 

 

 

Figure 9: Forecast of Agricultural Value Added (AGRI) 

Source: Authors' Calculations Using Eviews 10.0 

CONCLUSION 

Climate has a profound impact on agriculture, widely recognized as the human activity most 
dependent on climatic variations. The effects of climate on agriculture vary globally, with particularly 
significant socio-economic consequences in developing countries (Sultan Benjamin, 2015). 

Our econometric model results reveal that climate change has a significant negative effect on 
Moroccan agricultural activity. Climatic variations, such as rising temperatures and changing 
precipitation patterns, reduce crop productivity and undermine the resilience of agricultural 
systems. 

In the short term, our study demonstrates that precipitation has a positive and statistically significant 
impact, indicating that increased rainfall boosts agricultural value added. Conversely, temperature 
negatively influences agricultural value added, but this relationship is not statistically significant, 
suggesting that its short-term impact is limited. Similarly, industrial variation has a negative effect 
on agricultural value added, though this impact is also not statistically significant. 

In the long term, precipitation continues to have a positive impact due to its essential role in 
agricultural productivity, particularly in regions dependent on natural rainfall. In contrast, rising 
temperatures exert a significant and pronounced negative effect, reducing agricultural yields due to 
thermal stress, water shortages, and extreme weather conditions. Industrial activities, however, have 
a positive and statistically significant influence on agricultural value added, contributing through 
improved infrastructure, equipment, and inputs. These findings highlight the importance of fostering 
intersectoral synergies and adopting climate adaptation strategies to sustain the agricultural sector. 
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The forecasts suggest a downward trend in agricultural value added under all scenarios, 
underscoring the need for Morocco to adopt modern methods and techniques to enhance 
profitability and address the challenges of climate change. This calls for a shift toward climate-
resilient crops less dependent on weather variability. 

The unfavorable climatic conditions of recent decades may progressively become the norm in 
Morocco, placing the agricultural sector at risk. This highlights the urgency for specific interventions. 
Low precipitation and high temperatures, largely driven by greenhouse gas emissions, must be 
considered when formulating agricultural development policies. 

 Integrating climate concerns into development processes requires strategic actions by 
policymakers, local authorities, and socio-economic stakeholders. Key measures include: 

 Encouraging research to identify new climate-resilient agricultural technologies. 
 Diversifying crop types and varieties to adapt to changing climatic conditions. 
 Optimizing planting schedules to align with climate evolution. 

By addressing these challenges, Morocco can build a more resilient agricultural sector, capable of 
sustaining economic growth and ensuring food security in the face of ongoing climate change. 
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