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Decision-making under uncertainty is a pervasive challenge impacting 
individuals, organizations, and societies across diverse fields. While existing 
research has extensively explored the technical intricacies of stochastic models, 
it frequently underemphasise critical influences such as organizational 
dynamics, contextual constraints, and individual skill limitations that shape 
model selection and practical application. This study, reviews the extant 
literature to uncover insights into how individual predispositions, situational 
factors, and contextual conditions collectively drive stochastic model choice in 
uncertain decision-making scenarios. The study adopts the narrative content 
review methodology of existing decision science literature through the google 
scholar search engine; selecting peer-reviewed scholarly journals, conference 
proceedings, and opinion papers related to the utilisation of stochastic decision 
making models in business. Findings indicate that while all the factors influence 
stochastic model selection, contextual conditions- especially organizational 
culture and resource availability—are the most significant. The principal 
conclusion is that supportive environments with ample resources enhance 
SBDM adoption and adaptability, whereas resource constraints or resistant 
cultures often hinder effective SBDM utilization.  The study provides valuable 
insight to decision scientist, managers, and policymakers to foster an open and 
supportive organizational culture, ensure adequate resource investment in 
relevant software, tools, and training for staff, and address contextual 
constraints. 

 

INTRODUCTION   
In contemporary business situation, steering through uncertainty presents substantial challenges for 
organizations, especially when selecting and implementing appropriate stochastic decision model 
(Varathan, 2024). Stochastic modelling involving the use of probability theory to manage 
randomness in decision-making, are critical for informed choices under unpredictable conditions. 
These models support strategic planning, financial analysis, and operational management across 
industries by enabling decision-makers to weigh multiple outcomes and their likelihoods (Szollosi et 
al., 2023; Shone et al., 2021). In real-life situations, uncertainty is often caused by limited information, 
ambiguity, variability, or the availability of several possible outcomes. There have been problems 
over the years on how organisations make decisions under an uncertain scenario. Uncertain 
situations are conditions that the decision maker has little or no prior information about the potential 
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occurrence of state of nature (Dane & Pratt, 2017; Cao et al., 2021).  Therefore, selecting decision 
making models that align with specific business needs, situational dynamics, and environmental 
factors is often challenging, especially given the complexity of these models and the ever-evolving 
state of nature. Understanding the factors that influence the choice of decision model in a stochastic 
business scenario is worth investigating. 

Prior studies have primarily focused on the technical details and mathematical complexity required 
in stochastic models (Keith & Ahner, 2021; Carmeli & Halevy, 2017; Shone et al., 2021). Yet, these 
studies frequently overlook critical influences such as organisational culture, budget limitations, and 
the individual skills necessary to interpret complex outputs, which significantly impact model choice 
and utilisation in real-world contexts (Leal-Rodríguez et al., 2023). Moreover, many organizations 
lack adequate data infrastructure or analytical capacity, limiting their ability to fully leverage 
sophisticated stochastic models. This gap between theoretical development and practical application 
often results in the underutilization of models that could otherwise enhance business decision-
making (Koehler et al., 2018). 

Further complicating this scenario is the volatility, uncertainty, complexity, and ambiguity (VUCA) 
that characterize today's global economy (Kaikkonen et al., 2021; Muhammad et al., 2012). Rapid 
technological advancements, shifting regulations, and market volatility add layers of complexity, 
requiring decision models that are both precise and adaptable (Muhammad et al., 2021). However, 
due to their inherent complexity, stochastic models can be time-consuming and resource-intensive 
to recalibrate as conditions evolve, posing a challenge for organizations that must balance accuracy 
with agility (Dane & Pratt, 2017; Ezbakhe & Pérez-Foguet, 2021). Prior studies have not adequately 
addressed how businesses can manage this dual need for accuracy and adaptability, especially under 
constraints like limited resources or time pressures. 

Situational factors, including time constraints, resource availability, and environmental complexity, 
further influence the decision-making process (Muhammad et al., 2021). For example, limited time 
can restrict information gathering, while constrained resources can reduce available options and 
tools (Lim & Hui, 2020). Environmental complexity, with its unpredictable dynamics, requires more 
flexible and adaptive decision-making approaches. While some research has acknowledged these 
situational elements, studies often fall short in exploring how these constraints shape the selection 
and suitability of stochastic models for specific business needs. 

Furthermore, contextual influences, such as cultural norms and organizational structures, play a 
pivotal role in decision-making (Wiklund, 2020). Cultural expectations, for instance, may dictate 
whether decisions prioritize group consensus or individual autonomy, while institutional rules might 
determine stakeholder involvement levels (Shone et al., 2021). Despite the relevance of these 
contextual factors, existing research often treats stochastic model choice in isolation, failing to 
address the broader social, organizational, and cultural environment that affects decision processes 
(Ezbakhe & Pérez-Foguet, 2021; Bhatti et al., 2024). Without considering these contextual influences, 
decision models risk being misaligned with the organizational setting, potentially hindering their 
effectiveness and adoption. 

This study addresses these gaps by systematically reviewing the individual, situational, and 
contextual factors that influence the selection of stochastic business decision models (SBDMs). By 
identifying these driving forces, this study seeks to advance understanding of how organizations can 
address uncertainties more effectively through tailored decision model selection.  

Specifically, this research aims to answer the question: What are the individual, situational, and 
contextual forces driving the selection of stochastic business decision modelling (SBDM)? Answers to 
this research question through this review would contribute to a more holistic approach to stochastic 
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model adoption, fostering models that are both practically viable and contextually relevant for 
dynamic business environments.  

2. LITERATURE REVIEW 

2.1 Individual Influences 

Decision-making under uncertainty, where there is no guarantee of the outcomes, is an advanced 
process influenced by numerous personality traits. The purpose of this review is to highlight how 
cognitive biases, expertise, attitude to risk, and personality traits impact decision-making and the 
selection of decision-making models. Decision-making models can be chosen with significant impact 
from cognitive biases, which are systematic departures from rational decision-making. Confirmation 
bias individuals, for instance, could favour models that support their preconceived notions while 
ignoring opposing data (Varathan, 2024; Szollosi et al., 2023). On the other hand, people who are 
conscious of their biases might look for models of decision-making that take cognitive constraints 
into account or include debasing strategies (Abdel-Basset et al., 2020). Cognitive biases as 
highlighted by Al-Sharqi et al., (2022), can impact decision-making under uncertainty by potentially 
leading individuals to deviate from rational decision-making.  

The choice of decision-making models is also influenced by an individual's risk attitudes, which 
express their inclination towards either taking or avoiding risks. Models like the minimax regret 
model, which emphasizes minimizing potential losses or making cautious assumptions, may be 
preferred by risk-averse people (Huang, 2010; Hauser et al, 2004). On the contrary, risk-takers might 
favor models like the prospect theory (Gigerenzer & Gaissmaier, 2011) that include more aggressive 
assumptions or optimize future gains. 

The choice of decision-making models can also be influenced by personality qualities including 
neuroticism, conscientiousness, and openness to new experiences. For example, those with high 
openness to experience might be more open to new or unusual models of decision-making, while 
people with high conscientiousness might favour ordered and scientific methods (Djulbegovic et al., 
2012). People with high neuroticism tend to favor models that consider aspects of emotions or allow 
for greater degrees of uncertainty (Ezbakhe & Pérez-Foguet, 2021). 

The degree of knowledge and experience one possesses in a given field, or expertise, can have a big 
impact on the models used to make decisions. Based on their acquired knowledge and aptitude for 
seeing patterns, experts may rely on heuristics and intuitive decision-making models (Dinbabo et al., 
2021). On the other hand, inexperienced users could favour more analytical and structured models 
to make up for their lack of knowledge (Kannan et al., 2017). 

Studies have highlighted how individual characteristics influence the choice of decision-making 
models. For instance, a study conducted by Baucells & Heukamp, (2012) found that those who were 
more averse to risk and loss were also more inclined to use models based on prospect theory when 
making financial decisions. People with greater degrees of neuroticism tend to favour decision-
making models that take uncertainty and emotional considerations into account (Celona, 2017; 
Brace, 2023). 

2.2 Situational Influences 

Situational factors such as time pressure, complexity, available information, and decision context 
significantly influence the choice of decision-making models for handling uncertainty. Understanding 
these factors and their interplay is crucial for developing effective decision-making strategies 
tailored to specific contexts and organizational needs. For instance, time is a major factor in decision 
making quality and is regarded as one of the main resources used in decision making and choosing 
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(Ezbakhe & Pérez-Foguet, 2021; Gigerenzer & Gaissmaier, 2011). Making decisions in a hurry is 
something that many individuals deal with on a regular basis. Placing people under time constraints 
to make judgements can lead to pressure and stress. According to Clifford et al., (2023), people may 
make decisions without considering all of the options when there is a time constraint. Numerous 
researches have documented the detrimental impact of time constraints on the efficacy of decision-
making, and the pattern of outcomes is mostly constant (Crescenzi et al., 2021; Szollosi et al., 2023; 
Shone et al., 2021).  Feramani, (2018) postulated that when people are pressed for time, they are 
more likely to make "good enough" judgements as opposed to the optimal ones. Time constraints in 
work environments might cause people to rely more on instinctive and heuristic decision-making 
(Feramani, 2018).  

According to Szollosi et al., (2023) decision-makers under time pressure use less complex decision 
rules, give more weight to negative aspects, take fewer risks, and are less satisfied with their 
decisions than decision-makers who are not under time pressure. Pressure to make decisions quickly 
leads to a reduction in the amount of information gathered and processed, a reduction in the range 
of options examined, a failure to take crucial information into account, and poor decision-making.  

The quantity of variables, unknowns, and interdependencies in the task is what makes it complicated. 
More complex decision-making models that can effectively manage uncertainty are required for 
complex decision tasks (Arijaje & Aizebeokhai, 2024). For example, decision trees are frequently 
used in strategic decision-making to plot several option routes and the probability that go along with 
them. Nevertheless, a satisficing model could be adequate for simple decisions. This is choosing an 
alternative that satisfies a minimal set of requirements as opposed to looking for the greatest possible 
one.  

The amount and quality of information that is readily available has a big impact on how decisions are 
made. We might apply the bounded rationality model or depend on intuition when the knowledge is 
insufficient (Odukoya et al., 2018). This model focuses on choosing the optimal option given the 
information at hand while acknowledging the limits of human decision-making. We may experience 
information overload when confronted with an abundance of facts. In this case, using scenario 
planning or decision trees can help us organise the data and make better decision. 

Ultimately, the experience of the persons concerned plays a major role in determining the necessity 
for more information (Ogunmokun et al., 2023; Ogbari et al., 2018). One could argue that individuals 
with a great deal of experience making strategic decisions will not be as overwhelmed by information 
overload as middle-level or inexperienced individuals. This is because experienced individuals are 
more adept at picking out the most pertinent data and have a more coherent arrangement of 
information stored in memory, which allows them to pay attention to and process larger volumes of 
information than inexperienced individuals. According to Ogbari et al., (2018), a variety of external 
variables, such as stakeholder expectations, organisational culture, and legislative restrictions, 
influence decision-making techniques. Decision-makers may give preference to conservative models 
that reduce possible losses or liabilities in risk-averse contexts. On the other hand, in creative and 
dynamic environments, decision-makers may be more willing to accept risk and uncertainty and use 
strategies like agile decision-making frameworks or real alternatives analysis.  

2.3 Contextual Influences 

Contextual factors such as organizational culture, industry norms, regulatory requirements, and 
market conditions significantly influence the adoption and implementation of decision models under 
uncertainty. Organizations must carefully consider these factors when selecting and implementing 
decision models to ensure alignment with their strategic objectives and operational realities. 
According to Carlos Pinho, et al., (2014), organizational culture refers to culture related to 
organizations including schools, universities, not-for-profit groups, government agencies, and 
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business entities. A culture that values innovation, risk-taking, and agility is more likely to embrace 
uncertainty and adopt decision models that support flexible and adaptive decision-making (Kock, & 
Georg Gemünden, 2016).  

Also, a conservative or hierarchical culture may resist change and prefer traditional decision-making 
approaches, even in the face of uncertainty (Ramos, et al., 2024). For instance, tech startups often 
have a culture of experimentation and rapid iteration, making them more inclined to adopt 
probabilistic decision models like Monte Carlo simulations for risk analysis. Kaur, (2024), stated that 
the leadership style within an organization significantly influences its culture and, consequently, its 
approach to decision-making under uncertainty.  

The industry in which an organization operates also shapes its approach to decision-making under 
uncertainty. Different industries have varying risk profiles, regulatory environments, and 
competitive landscapes, influencing the choice of decision models (Linnenluecke, et al., 2013). For 
instance, industries with high regulatory scrutiny, such as finance or healthcare, often require 
decision models that comply with strict regulatory requirements.  

Al-Sharqi, et al., (2022), stated that these industries, decision models must not only provide accurate 
predictions but also adhere to legal and ethical standards. Moreover, industry norms dictate the level 
of risk tolerance and the willingness to adopt innovative decision-making approaches. Established 
industries with long-standing practices may be more resistant to change, preferring tried-and-tested 
methods despite their limitations in handling uncertainty (Muhammad, et al., 2021). In contrast, 
emerging industries or disruptors may embrace uncertainty as an opportunity for competitive 
advantage and be more open to adopting sophisticated decision models powered by artificial 
intelligence or machine learning. 

Regulatory requirements impose constraints on decision-making processes, particularly in highly 
regulated sectors such as finance, healthcare, and energy (Muhammad, et al., 2021). Decision models 
must comply with regulatory standards to ensure transparency, fairness, and accountability 
(Ezbakhe, & Pérez-Foguet, 2021). For instance, financial institutions are required to use risk models 
that meet the guidelines set by regulatory bodies like the Basel Committee on Banking Supervision. 
However, regulatory compliance can sometimes be at odds with the need for agility and innovation 
in decision-making. Stringent regulatory requirements may hinder the adoption of advanced 
decision models that deviate from established practices or lack interpretability. Therefore, 
organizations must strike a balance between regulatory compliance and leveraging cutting-edge 
technologies to enhance decision-making under uncertainty. 

Xin & Xin, (2023) stated that market conditions, including competitive dynamics, customer 
preferences, and economic trends, heavily influence decision-making processes. In highly 
competitive markets, organizations face constant pressure to innovate and adapt to changing 
customer demands, driving the adoption of decision models that enable rapid experimentation and 
scenario analysis. For example, in the retail sector, predictive analytics models are employed to 
forecast consumer trends and optimize inventory management (Petitet et al., 2021). According to 
Zhang & Chen, (2022), economic uncertainties, such as fluctuations in exchange rates or commodity 
prices, also impact decision-making strategies. During periods of economic instability, organizations 
may prioritize risk mitigation and cost reduction, leading to the adoption of decision models that 
emphasize scenario planning and sensitivity analysis. Conversely, in times of economic growth, 
organizations may focus on capitalizing on opportunities and invest in predictive analytics and 
optimization models to maximize returns. 

Table 1: Summary of Factors Influencing Stochastic Business Decision Model Selection 
 

Author 
and Year 

Title of the study Study objective Research design Identified 
Factors  

Findings/outcome 
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Sproten et 
al., (2018) 

Decision making and 
age: Factors 
influencing decision 
making under 
uncertainty 

Examine the age effects 
of decision maker on 
the choice of decision 
model choice  

Card game 
(N=200; older 
adults: 97)Balloon 
Analogue Risk 
Task (BART) 

Ambiguity, Age 
and risk and The 
role of feedback 

The study found no 
significant age 
variations in decision 
making situation and 
choice of model  

Bai et al., 
(2022) 

Where business 
networks and 
institutions meet: 
Internationalization 
decision-making 
under uncertainty 

To investigate how 
business networks and 
institutional forces 
concurrently affect 
internationalization 
decision making under 
uncertainty 

Survey methods 
using 758 
manufacturing 
SMEs in Brazil 
(103 firms), China 
(198), Poland 
(140), Italy (154), 
and Sweden (163), 
complemented 
with secondary 
data 

  

Abdel-
Basset,  et 
al., (2020) 

A novel decision-
making model for 
sustainable supply 
chain finance under 
uncertainty 
environment 

To evaluate the set of 
measurements to 
provide sustainable 
supply chain finance in 
the gas industry under 
uncertainty 

The Best-Worst 
method, TOPSIS, 
and TODIM  
 

Price and cost 
information, 
Product/service 
level, technology 
constraint and 
demand factor 

The most important 
criteria for improving a 
company's performance 
and obtaining 
sustainable supply 
chain financing are 
financial qualities and 
product/service 
management. 

Zong, et al., 
(2022) 

Decision-making 
under uncertainty in 
the early phase of 
building façade 
design based on 
multi-objective 
stochastic 
optimization.  

A multi-objective 
stochastic optimization 
(MOSO) framework 
was developed to 
evaluate decision-
making under 
uncertainty in the early 
phase of building 
façade design. 

 Qualitative 
research design is 
used. A case study 
with solid timber 
and brick 
construction types, 

Design decisions 
and 
environmental 
uncertainty. 

The insulation and 
exterior wall cladding 
are the most variable 
parameters of the 
Pareto-optimal options 
for building façade 
design, according to the 
results.  
 

Zong, et al., 
(2022) 

 Decision-making 
under uncertainty in 
the early phase of 
building façade 
design based on 
multi-objective 
stochastic 
optimization.  

A multi-objective 
stochastic optimization 
(MOSO) framework 
was developed to 
evaluate decision-
making under 
uncertainty in the early 
phase of building 
façade design. 

 Qualitative 
research design is 
used.  

Design decisions 
and 
environmental 
uncertainty. 

The insulation and 
exterior wall cladding 
are the most variable 
parameters of the 
Pareto-optimal options 
for building façade 
design, according to the 
results.  
 

Dinbabo et 
al., (2021) 

Socio-economic 
inequity and 
decision-making 
under uncertainty: 
West African 
migrants’ journey 
across the 
Mediterranean to 
Europe. 

To determine why 
migrants make 
decisions in conditions 
of uncertainty, to travel 
from West Africa, 
crossing the 
Mediterranean Sea to 
the ultimate 
destination of Europe. 

The qualitative 
research design 
was used. The 
study employed a 
mix of secondary 
data analysis and 
field data 
collection.  

Rationality of cost 
maximisation and 
risk reduction, 
sources of 
information at 
migrants’ 
disposal.  

Youth population 
expansion, poor access 
to opportunity, poverty, 
and unemployment 
amid precarious 
problems with 
development.  

Gleißner, et 
al., (2021). 

EU’s ordering of 
COVID-19 vaccine 
doses: political 
decision-making 
under uncertainty. 

Evaluate EU’s political 
decision in general and 
the decisions of the 
German government to 
procure vaccine doses 
against the background 
of modern economics 
decision under 
uncertainty 

Qualitative 
research methods. 
Case study of 
COVID-19 
Pandemic in 
Germany.  

Hindsight Bias, 
Production 
Capacities and 
Production 
Processes, Time of 
Decision, 
Uncertainty, and 
Incomplete 
Information 

EU's choice to purchase 
the COVID-19 vaccine 
was, for once, a clear 
one: it would have made 
sense to get from all 
prospective vaccine 
providers the quantity 
of vaccine in the EU. 
 

Pappas, & 
Glyptou, 
(2021) 

Accommodation 
decision-making 
during the COVID-19 
pandemic: 
Complexity insights 
from Greece. 

To explore the 
decision-making 
attributes driving their 
accommodation 
purchasing preferences 
in times of increased 
uncertainty in 
Athenian,  

The mixed 
approached was 
used involving the 
quantitative and 
qualitative 
methods. The 
study was carried 
out in Athens, 
Greece, in April 
2020, and included 

Health and safety, 
the price-quality 
nexus, risk 
aspects, and 
quality related 
health and safety,   

The findings provide 
market data on 
consumer goals, 
attitudes, and intentions 
connected to lodging 
during the pandemic, 
and they have numerous 
significant management 
ramifications for the 
lodging sector. 
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adult Athenian 
inhabitants.  
  

Ming, et al., 
(2016). 

Decision-making 
model of generation 
technology under 
uncertainty based on 
real option theory. 

To evaluate the 
stochastic model with 
main effective 
valuables considering 
relative risk and 
uncertainties. 

The quantitative 
method was used 
in this paper. The 
study was 
conducted at 
trading electricity 
market of Inner 
Mongolia using the 
irreversible 
investment 
concept and real 
option theory 

Price 
uncertainties 

The findings reveal that 
taking a full 
consideration of 
uncertainties may 
reduce the economic 
potential of different 
generation system. 

3. METHODS AND DATA 
Building on the approach used by Owolabi et al., (2023) a narrative content review was conducted to 
examine the range of factors influencing the selection of stochastic decision-making models in 
organizations. This methodological choice was essential for guiding the selection of relevant studies 
from prominent databases and respected peer-reviewed journals. The narrative review approach 
was specifically chosen for its effectiveness in comparing and synthesizing findings across studies 
(Yevu & Yu, 2019). 

Data were gathered from major academic sources, including Google Scholar, Scopus, Web of Science, 
and published reports from esteemed organizations in data science and operations research, such as 
INFORMS, the International Institute for Applied Systems Analysis, the World Bank, and the OECD. 
The search utilized keywords such as "stochastic model," "decision analysis," "decision-making under 
uncertainty," "state of nature," and "decision environment." Articles were initially screened by titles 
and abstracts, then selected based on specific inclusion and exclusion criteria. Exclusions included 
non-English publications, dissertations, book chapters, duplicate publication, and conference 
proceedings not published in peer-reviewed journals. In contrast, only relevant, English-language, 
peer-reviewed studies focusing on factors influencing model selection under uncertainty in a 
business context were included.  

Selected studies meeting these criteria underwent data extraction to capture essential details, 
including study characteristics (authors, year, and methodology), sample sizes, major findings, and 
identified factors affecting model choice. The final analysis involved categorizing recurring themes 
such as resource allocation, ethical considerations, risk tolerance, organizational nature and culture, 
and decision-maker expertise. This synthesis helped identify existing research gaps and suggested 
potential directions for future studies. 

4. FINDINGS AND DISCUSSION 

An increasing amount of research identifies individual qualities as important elements influencing 
decision-making under uncertainty. Individuals with higher risk tolerance tend to gravitate towards 
models stressing prospective rewards (Weber et al., 2018). Cognitive biases also have a significant 
impact. For example, overconfidence might cause an overestimation of one's capacity to deal with 
uncertainty, thereby biasing decision-makers toward models that need less information processing. 
Individuals with higher degrees of neuroticism, on the other hand, may be more risk-averse, selecting 
models that prioritize avoiding possible losses (Wang et al., 2021). Additionally, experience in the 
given decision area might impact model selection. Experienced professionals may use their 
experience to make informed decisions under uncertainty, perhaps selecting less structured models 
that allow for incorporating this expertise (Shmueli, 2019). 

When considering situational factors, the decision-making context substantially impacts the 
uncertainty model selection. Time constraints might cause heuristic decision-making, favoring 
simpler models that need faster processing (Dane & Pratt, 2017). In contrast, situations with ample 
information may allow for the employment of more complicated models that encompass a broader 
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range of data points (Yao et al., 2019). Furthermore, decision framing can impact model selection. 
When a decision is portrayed as a possible gain, people may be more prone to embrace optimistic 
models (Koehler, et al., 2018). Social impact might also be important. Conformity bias can drive 
decision-makers to choose models that the majority prefer, even if they do not entirely agree with 
their preferences (Herlocker et al., 2019). 

Cultural influences influence risk tolerance and decision-making methods. Individualistic cultures 
may choose models that emphasize personal benefit and agency, whereas collectivist cultures may 
prefer models that consider community well-being (Singh et al., 2018). Additionally, organizational 
structures and decision-making hierarchies might have an impact on model selection. Individual-
based models may benefit more from decentralized organizations, whereas hierarchical systems may 
prefer standardized, top-down approaches (Carmeli & Halevy, 2017). Finally, the availability of 
resources (both financial and technological) might have an impact on model selection. Resource-
constrained scenarios may need simpler, less data-intensive models, whereas sufficient resources 
may allow for the use of more sophisticated, computationally demanding models (Lim & Hui, 2020). 

5.1 Conclusion and Suggestion for Future Research  

In conclusion to the study, it is very necessary to understand the varied characters of human choices 
when making a decision under uncertainty in an organization. Each person brings a distinct set of 
cognitive biases, preferences, and experiences to the table, which influence how they perceive and 
assess options. In addition, situational characteristics such as time limits, resource availability, and 
stakeholder interests can have a substantial impact on the decision-making process. 

Larger contextual considerations such as cultural norms, organizational structures, and legal 
frameworks have a significant impact on the appropriateness of various decision-making techniques. 
Ignoring any of these factors may result in inferior outcomes or even decision failures in any 
organisational settings. Thus, a thorough awareness of individual, situational, and contextual 
elements is required for selecting an effective decision-making model that is tailored to the unique 
demands and complexity of the scenario at hand.  

In the light of the findings, the following recommendations becomes essential: Foster a Supportive 
Organizational Culture: Encourage a culture that is open to change and innovation. This can be 
achieved through regular training, workshops, and open communication channels that promote the 
benefits of adopting stochastic decision models. Ensure Adequate Resource Allocation: Allocate 
sufficient resources, including time, budget, and personnel, to support the implementation and 
utilization of stochastic decision models. This includes investing in necessary software, tools, and 
training for staff. Address Contextual Constraints: Identify and mitigate any contextual constraints 
that may hinder the effective use of stochastic decision models. This could involve tailoring models 
to fit specific organizational needs or addressing individual skill gaps through targeted training 
programs. 

Future researchers could delve deeper into specific aspects of the interplay between individual, 
situational, and contextual factors, exploring how they interact across different decision contexts and 
populations. Additionally, longitudinal studies could shed light on the evolving nature of decision-
making preferences and the effectiveness of interventions aimed at optimizing decision-making 
processes in uncertain environments. Overall, the findings reveals an underscores the importance of 
a holistic approach to understanding and enhancing decision-making in the face of uncertainty.  
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