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River water quality has nonlinear and non-stationary characteristics, 
and the data set is huge and complex. To improve the accuracy of water 
quality prediction, a water quality prediction model based on ensemble 
machine learning technology was proposed, which mainly used multi-
layer Perceptron (MLP), Support Vector Regression (SVR), Extreme 
Gradient Boosting (XGBoost). Through dimensionality reduction and 
normalization of high-dimensional data sets, the key features extracted 
by different machine learning models are fused, and further optimized 
based on Cubist algorithm, the most accurate new prediction system 
for water quality prediction is developed. For this purpose, the water 
quality dataset of the Yellow River Basin from January 2021 to 
December 2022 based on 19 effective parameters is collected, and 
three important water quality indicators such as dissolved oxygen, 
ammonia nitrogen and water quality categories are selected to evaluate 
the model performance. The experimental results show that the 
performance of the proposed ensemble prediction model based on 
high-dimensional datasets is better than that of MLP, SVR and XGBoost 
models in R2, RMSE and MAE evaluation indicators. This study not only 
compares the performance of different models in water quality 
prediction, but also explores the significant improvement effect of the 
optimized Cubist algorithm on the prediction accuracy, which provides 
a valuable reference for the research of water quality prediction based 
on machine learning. 

INTRODUCTION 

Water is an important resource for human survival, and the quality of water quality directly 
affects human life and health and social and economic development. However, with the 
increasing level of social industrialization and urbanization, the water environment is 
polluted, leading to the deterioration of water quality and water disasters (Falconi et al., 
2017; Peter et al., 2007) and pose a serious threat to human health and ecosystems 
(Vörösmarty et al., 2010). Water quality prediction is an important means of environmental 
protection and water resources management. Water quality prediction can also effectively 
help water ecosystem assessment and protection, and provide help and support for 
aquaculture, tourism, and other economic industries. In short, efficient, and accurate water 
quality prediction can not only help prevent and control water pollution and ensure the 
safety of drinking water, but also support the protection and restoration of the ecological 
environment and promote the sustainable use of water resources. 

http://www.pjlss.edu.pk/
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Traditional water quality prediction methods mainly use physical and chemical models. 
These models predict changes in water quality parameters by simulating physical and 
chemical processes in water bodies. Common models include 1D, 2D and 3D water quality 
models, such as CE-QUAL-W2, EFDC and MIKE series models, etc. These models can provide 
detailed water quality predictions by describing the dynamics of water flow, dissolved 
substances, temperature, and pollutants, etc., through systems of equations. However, 
these models usually require a large amount of field data and expertise for calibration and 
validation and have high computational complexity. Water quality prediction data usually 
contains multiple dimensions, such as physical indicators, chemical indicators, biological 
indicators, etc. Each index can be subdivided into multiple sub-indexes, such as total 
nitrogen can be subdivided into ammonia nitrogen, nitrous acid nitrogen, nitric acid 
nitrogen, etc. The change of water quality is affected by many factors, such as 
meteorological conditions, human activities and so on. These factors may interact with each 
other and have complex nonlinear relationships. Moreover, water quality changes over 
time. For example, the pollution status of rivers, lakes and other water bodies will change 
over time (Xu, 2020). Even due to instrument failure, human error and other reasons, water 
quality data may have missing values, reducing data quality, and affecting the accuracy of 
water quality prediction. Therefore, it is of great technical research value to use computer 
science and technology to improve the analysis and modeling of water resources data, and 
try to use advanced artificial intelligence technology, especially machine learning and 
computer vision technology to deal with the problems of high dimensionality, nonlinearity, 
dynamics, complexity, and absence of water quality data for intelligent water quality 
prediction. 

RELATED WORKS  

In recent years, scholars both domestically and internationally have extensively explored 
water quality prediction. Various methods have been utilized, including the ARIMA model 
(Luo et al., 2020), stepwise clustering analysis (Chang et al., 2015), multiple regression 
coupling model (Luo and Luo, 2016), grey fuzzy Markov chain (Yu et al., 2014), Bayesian 
networks (Graham et al., 2019) and artificial neural networks (Alizadeh and Kavianpour 
2015). These methods can be broadly categorized into traditional prediction methods and 
artificial intelligence prediction methods. While traditional methods like regression 
analysis and time prediction are popular due to their well-established theoretical 
foundation, simplicity in calculation, and ease of implementation, they fall short in handling 
complex nonlinear data relationships, resulting in limited prediction accuracy. On the other 
hand, artificial intelligence prediction methods such as support vector machine (Zuo et al., 
2018) and artificial neural network (Cheng et al., 2021) effectively overcome the limitations 
of traditional approaches by dealing with nonlinear relationships more efficiently and 
significantly improving prediction accuracy. 

MLP has shown great potential in the field of water quality prediction because of its 
powerful nonlinear mapping ability and self-learning ability. Yang Weilun et al. (2023) and 
Liu Yanxin (2022) combined MLP with algorithms such as linear regression and PSO to 
improve the accuracy and stability of water quality prediction by fusing the advantages of 
different algorithms (Yang et al., 2022; Liu et al., 2022). Among them, linear regression 
method is used to deal with linear relationship, while MLP is used to deal with nonlinear 
relationship, and the combination of the two can better fit the change law of water quality 
data. The PSO algorithm is used to optimize the network parameters of MLP and improve 
the generalization ability of the model. Zhai et al. (2022) used ESN for water quality 
prediction and improved the prediction accuracy by optimizing the parameters through 
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grid search (Zhai et al., 2022). Bai Yun et al. (2020) combined VMD and LSSVR to improve 
the accuracy of river water quality prediction (Bai and Li, 2020). Xiao Rongping et al. (2020) 
proposed a multi-algorithm combination method for river water quality prediction, which 
improved the accuracy of prediction through the combination of grey prediction, 
generalized autoregressive conditional heteroscedasedas model and discrete wavelet 
transform (Xiao et al., 2020). 

As a powerful machine learning algorithm, SVR has shown significant advantages in the 
field of water quality prediction. Xue Tonglai (2020) used Genetic Algorithm (GA) to 
optimize the parameters of SVR model to improve the generalization ability and prediction 
accuracy of the model in water quality prediction (Xue et al., 2020). Zhou Peijun (2020) 
combined PLS, GWO and SVR to construct a new water quality prediction model to improve 
the prediction performance and stability of the model (Zhou, 2020). Luo et al. (2020) 
combined the ARIMA model with SVR to form a combined prediction method, to make full 
use of the advantages of the two algorithms and improve the accuracy and stability of water 
quality prediction (Luo et al., 2020). Cao Wenzhi et al. (2023) combined Ensemble Empirical 
Mode Decomposition (EEMD), Long Short-Term Memory (LSTM) and SVR. A multi-scale 
and multi-variable water quality prediction model is constructed (Cao, et al., 2023). 

Although the above methods improve water quality prediction accuracy by fitting nonlinear 
relationships between variables, the model's generalization ability and robustness require 
further improvement due to the complexity of multi-dimensional data from numerous 
monitoring sites with various parameters. These high-dimensional data sets contain a lot 
of redundant information and noise, which also brings great difficulties to the construction 
and training of water quality prediction models. Aiming at the above problems, this paper 
proposes a water quality prediction method based on high-dimensional data set ensemble 
prediction model. By using MLP, SVR, XGboost and other machine learning technologies, 
combined with Cubist integrator for model optimization, a water quality prediction method 
based on high-dimensional data set integrated prediction model is constructed. This 
integrated method can effectively deal with high-dimensional data sets, improve the 
generalization ability and prediction accuracy of the model, and provide more reliable 
technical support for environmental protection and water resources management. 

THE RESEARCH METHOD 

A. MLP 

Multilayer Perceptron (MLP) is a classical artificial neural network model, which was proposed 
by Frank Rosenblatt in 1958 (Rosenblatt and Frank, 1958). Neural networks can use training 
data for fitting and test data for performance evaluation. Hosseini et al. (2022) proposed that 
backpropagation algorithm can improve the generalization ability of data training and reduces 
the prediction error, or the difference between the estimated output and the actual output 
(Hosseini et al., 2022). The basic structure of the MLP model is shown in FIGURE 1(PP, 2021). 

 

Figure.1 MLP Structure. 
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B. SVR 

Support vector Machine regression (SVR) algorithm was first proposed by Vladimir Vapnik et 
al in 1995 (Vapnik and Vladimir, 1995). SVR algorithm can effectively deal with nonlinear data 
by finding the hyperplane that maximizes the margin for regression prediction. In 2001, Faruto 
et al. proposed a variety of kernel functions, which made SVR algorithm can be applied to high-
dimensional data sets (Faruto, 2009). The SVR structure is shown in FIGURE 2 (dxw, 2019). 

 

Figure.2 SVR Structure. 

C. XGBOOST 

In 2015, Chen et al. first proposed XGBoost model (Chen et al., 2015). XGBoost, short for 
"Extreme gradient boosting," is a tree-based machine learning algorithm that is known for its 
ability to handle complex datasets and its training efficiency. Multiple lifting trees can be 
generated in parallel at the same time in this technique (Nguyen et al., 2019). The XGBoost 
model can effectively solve many problems by using the gradient boosting technique (GB) 
(Duan et al., 2020). The general architecture of the XGBoost model is shown in FIGURE 3 (Zhao 
et al., 2023). 

 

Figure.3 XGBOOST Structure. 

D. CUBIST 

Robert Quinlan developed Cubist in 2004 (Quinlan), creator of the C4.5 decision tree algorithm, 
as an extension of the M5 architecture tree (Quinlan, 1992). It is a rule-based machine learning 
algorithm for classification and regression tasks that builds decision trees by recursively 
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partitioning data based on feature values. Cubist works well when dealing with noisy or high-
dimensional regression problems. The algorithmic results of prediction models are more 
accurate than simple regression models and simpler than artificial neural networks. 

DATASET 

The data set used in this experiment is the surface water quality monitoring data of China from 
2021 to 2023. The data came from the monitoring data of the water quality automatic 
monitoring station of the National surface water quality automatic monitoring network. The 
monitoring data mainly included water temperature, pH, dissolved oxygen, conductivity and 
turbidity, ammonia nitrogen, permanganate index, total nitrogen and total phosphorus, and 
some water stations measured total organic carbon, chlorophyll a, algae density, VOCs, 
biological toxicity, fecal coliform, and heavy metals. In this study, 41,464 surface water data of 
the Yellow River Basin from January 1, 2021 to December 12, 2022 were selected. The dataset 
is shown in FIGURE 4. 

 

Figure.4 Screenshot of the Yellow River water quality dataset. 

EXPERIMENTAL DESIGN  

A. THE WORKFLOW OF EXPERIMENTAL 

The purpose of this study is to improve the accuracy and generalization ability of water quality 
prediction. In recent years, using machine learning methods to predict ecological environments 
such as water quality has become a research hotspot. This experiment aims to study and 
compare the performance of MLP, SVR, and XGBoost models in water quality prediction and 
design respective optimization algorithms as inputs to the Cubist algorithm to further improve 
the accuracy of water quality prediction. The experimental process is described as follows: 

1. Data preprocessing: Collect historical water quality data, including water temperature, 
pH value, dissolved oxygen, ammonia nitrogen, and total phosphorus. Clean the data, 
handle missing values and outliers. Missing values are filled in using interpolation or mean 
filling, and outliers are removed or corrected through statistical analysis methods. 
Normalize or standardize the data to eliminate the influence of different feature scales on 
model training. Divide the data into a training set and a test set according to an 8:2 ratio. 
Among them, the training set has 33171 data points, and the remaining 20% of the data 
(8292 data points) are used for testing. 

2. MLP model construction: To select the optimal model for predicting water quality, this 
study tries to design and compare several MLP models with different learning algorithms, 
transfer functions, and hidden neurons. The training process uses cross-validation method 
to adjust the learning rate, batch size, etc.  
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3. SVR model construction: In this study, we selected linear kernel, RBF kernel, polynomial 
kernel, and Sigmoid kernel functions to try and develop several SVR models. We set 
appropriate regularization parameters C and penalty parameters ε, used appropriate 
solvers, trained the models, and then selected the optimal model from them. 

4. XGBoost model construction: We used the XGBoost library to try and build linear 
regression models, gradient boosting tree models, and distributed random tree models, 
setting different learning rates, tree numbers, and maximum depths for training. Then we 
selected the optimal model from them. 

5. Cubist model integration optimization: In this study, the Cubist algorithm will serve as a 
secondary optimizer for the MLP, SVR, and XGBoost models to process high-dimensional 
water quality data to further improve prediction accuracy. Train the parameters of three 
models as inputs for the Cubist algorithm, and use regression tree-based rule generation 
methods, cost complexity pruning, and information gain pruning to optimize the 
parameters of the Cubist algorithm and ensure the prediction effect of the model. 

6. Model evaluation: We used R2, RMSE, and MAE as three statistical indicators to evaluate 
the model performance and analyze the accuracy of the prediction level.  

7. Results Analysis: Through the experimental process described above, compare the 
performance of the three models in water quality prediction and analyze their respective 
advantages and disadvantages. Explain the effect of optimizing the Cubist algorithm on 
improving water quality prediction accuracy. Provide reference for further research on 
machine learning-based water quality prediction. 

B. The Result of Experimental 

Since dissolved oxygen, ammonia nitrogen concentration and water quality category can best 
reflect the water quality condition, this paper mainly selects three indicators of dissolved 
oxygen, ammonia nitrogen and water quality category for prediction. Through experiments, 
MLP, SVR, XGBoost three models have discovered better prediction models and achieved good 
prediction effects. After the second optimization of the integrated Cubist model, the effect is 
even better. 

1.MLP model 

In this paper, four MLP models (as shown in TABLE 1) were successively designed for 
experiments, and it was finally found that the MLP-S model had the best effect in predicting 
ammonia nitrogen, dissolved oxygen and water quality types, as shown in FIGURE 5. 

TABLE 1: MLP model 

MLP-S MLP-D MLP-B MLP-E 

Model architecture: 
Three hidden layers 
with 100, 100, 50 
neurons, respectively 
Activation function: 
ReLU 
Maximum number of 
iterations: 500 
Optimization 
algorithm: 

Model architecture: 
Three hidden layers with 
100, 100, 50 neurons, 
respectively 
A Dropout layer is added 
after each hidden layer 
with a drop rate of 0.5 
Activation function: ReLU 
Optimization algorithm: 
Adam Optimizer 

Model architecture: 
Three hidden layers with 
100, 100, 50 neurons, 
respectively 
A Batch Normalization 
layer is added after each 
hidden layer 
Activation function: ReLU 
Optimization algorithm: 
Adam Optimizer 

Model 
architecture: 
Three hidden 
layers with 100, 
100, 50 neurons, 
respectively 
Activation 
function: ReLU 
Optimization 
algorithm: 
Adam Optimizer 
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Stochastic Gradient 
Descent (SGD) 

 

 

Figure.5 Results of MLP-S model prediction of ammonia nitrogen, dissolved oxygen, and water 
quality type. 

2.SVR model 

In this paper, four SVR models are successively designed for experiments as shown in 
TABLE 2. Finally, it is found that the SVR-R model has the best effect on predicting ammonia 
nitrogen, dissolved oxygen and water quality categories, as shown in FIGURE 6. 

TABLE 2: SVR model 

SVR-L SVR-R SVR-P SVR-S 

Kernel function 
expression: 
\(K(x, x') = x \cdot x'\) 
Optimization 
algorithm: 
The LIBSVM solver is 
used 
Model parameters: 
The regularization 
parameter C: 1.0 
The penalty parameter 
ε : 0.1 

Kernel function 
expression: 
\(K(x, x') = \exp(-
\gamma \|x - x'\|^2)\) 
Optimization algorithm: 
The LIBSVM solver is 
used 
Model parameters: 
The regularization 
parameter C: 1.0 
The penalty parameter ε : 
0.1 
γ (kernel width 
parameter) : 1 / (number 
of features) 

Kernel function 
expression: 
\(K(x, x') = (x \cdot x' + 
r)^d\) 
Optimization algorithm: 
The LIBSVM solver is 
used 
Model parameters: 
The regularization 
parameter C: 1.0 
The penalty parameter ε : 
0.1 
The order of the 
polynomial is d: 3 
r (offset) : 0.0 

Kernel function 
expression: 
\(K(x, x') = 
\tanh(\gamma x 
\cdot x' + r)\) 
Optimization 
algorithm: 
The LIBSVM 
solver is used 
Model 
parameters: 
The regularization 
parameter C: 1.0 
Penalty parameter 
ε : 0.1γ (kernel 
width 
parameter) : 0.1 
r (offset) : 0.0 

 

Figure.6 Results of SVR-R model prediction of ammonia nitrogen, dissolved oxygen, and water 
quality type. 
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3.The XGoost model 

In this paper, four XGBoost models are designed for experiments as shown in TABLE 3. 
Finally, it is found that the XGBoost-S model has the best effect on predicting ammonia 
nitrogen, dissolved oxygen and water quality categories, as shown in FIGURE 7. 

TABLE 3: XGBOOST model 

XGBoost-S XGBoost-GBT XGBoost-GBL XGBoost-D 

Multiple decision 
trees are constructed 
and weighted voting 
is performed by the 
lifting algorithm. 
Objective function: 
Squared error 

gbtree (Tree-based lifting 
method) : Multiple 
decision trees are built 
and weighted voting is 
performed by a lifting 
algorithm. 
Objective function: 
Squared error 
Model parameters: 
booster: gbtree 

gblinear (Lifting Based on 
Linear Models) : This 
method builds multiple 
linear models and uses a 
lifting algorithm for 
weighted voting. 
Objective function: 
Squared error 
Model parameters: 
booster: gblinear 
 

dart (Decision 
Tree-based 
Dropout Boosting) : 
Randomly drops 
some trees in each 
boosting round to 
reduce overfitting. 
Objective function: 
Squared error 
Model parameters: 
booster: dart 

 

Figure.7 Results of XGboost-s model prediction of ammonia nitrogen, dissolved oxygen, and water 
quality type. 

4.Cubist model optimization 

The architecture shown in FIGURE 8 was used to create the Integration prediction model 
for calculating the water quality prediction. The optimal prediction results of MLP, SVR, and 
XGBoost models are used as input features of the Cubist algorithm to construct a new 
training set. Depth, etc. Cubist employs a regression tree-based rule generation approach 
using cost-complexity pruning and information gain pruning to avoid overfitting. Through 
verification, the prediction effects of Cubist model on ammonia nitrogen, dissolved oxygen 
and water quality types are shown in FIGURE 9-11. 

 

Figure.8 Flowchart of the Integration prediction approach. 
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Figure.9 Results of Cubist model prediction of dissolved oxygen. 

 

Figure.10 Results of Cubist model prediction of ammonia nitrogen. 

 

Figure.11 Results of Cubist model prediction of water quality type. 

 

5. RESULT ANALYSIS 

After establishing the prediction model, R2, RMSE and MAE are used to evaluate the 
accuracy and performance of the model. The comparison results of the analysis indicators 
of different prediction models are shown in Table 4. 

TABLE 4: Comparison of analysis indicators of different prediction models  

MODEL 
TARGE
T 

R2 RMSE MAE 

MLP-S 
Dissolve
d 
Oxygen 

0.9995
86 

0.0432
9 

0.03156
2 

SVR-R 
Dissolve
d 
Oxygen 

0.9981
24 

0.0921
36 

0.04828
8 

XGBoost-
S 

Dissolve
d 
Oxygen 

0.9999
92 

0.0059
45 

0.00436
6 
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Cubist 
Dissolve
d 
Oxygen 

0.9999
93 

0.0057
43 

0.00408
1 

MLP-S 

Water 
Quality 
Categor
y 

0.8779
54 

0.2543
37 

0.17425
5 

SVR-R 

Water 
Quality 
Categor
y 

0.8593
63 

0.2730
23 

0.17123
1 

XGBoost-
S 

Water 
Quality 
Categor
y 

0.9901
38 

0.0722
97 

0.01034 

Cubist 

Water 
Quality 
Categor
y 

0.9915
61 

0.0668
8 

0.00447 

MLP-S 

Ammon
ia 
Nitroge
n 

0.9906
5 

0.0143
66 

0.01058 

SVR-R 

Ammon
ia 
Nitroge
n 

0.9150
97 

0.0432
91 

0.03521
9 

XGBoost-
S 

Ammon
ia 
Nitroge
n 

0.9999
84 

0.0005
86 

0.00026
3 

Cubist 

Ammon
ia 
Nitroge
n 

0.9999
84 

0.0005
86 

0.00026
2 

According to the experimental results, Cubist model is better than other models because: 

(1) Cubist can fuse information from different machine learning models to obtain more 
comprehensive information and improve prediction accuracy. In the Cubist model, taking 
the trained parameters of MLP, SVR, and XGBoost models as input is equivalent to fusing 
the prediction results from different models, which can make up for the shortcomings of a 
single model and improve the robustness and accuracy of the prediction. 

(2) MLP, SVR, and XGBoost models automatically perform feature extraction during the 
training process, and extract key features related to water quality prediction from the 
original data. Using these extracted features as input to Cubist can avoid Cubist to repeat 
feature extraction, improve efficiency, and possibly obtain a more effective feature 
representation. Cubist model takes the optimal models of MLP, SVR, and XGBoost as input, 
which can play their respective advantages and compensate for each other's shortcomings, 
to obtain better prediction results. 

CONCLUSION 
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In the study of water quality prediction, we design and develop the optimal prediction models 
of MLP, SVR and XGBoost, and then aggregate the results and import them into the super 
Learner model Cubist to form a new integrated prediction model for high-dimensional data: 
HD-Cubist-Integration Learner model. This is a high-quality water quality prediction 
technology, which combines information fusion, feature extraction advantages, model 
complementary advantages and its own rule learning ability. It synthetically uses information 
and features from different models to learn more effective rules, to obtain better prediction 
results than a single model. The experimental results highlight its high accuracy and 
performance.  
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