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This study provides significant insights into the factors influencing 
consumer purchase intentions in online shopping for the region of Tamil 
Nadu, South India, including content quality, social media influencer 
credibility, engagement in social commerce, dynamic pricing, corporate 
social responsibility, and hedonic motivation. By applying a quantitative 
survey approach among 540 selected respondents, the evenly distributed 
sample covered various ages, incomes, and educational backgrounds. The 
analysis conducted is as follows: Consumer purchase intentions are 
positively influenced by content quality, social media influencer credibility, 
engagement in social commerce, and hedonic motivation. However, 
corporate social responsibility and dynamic pricing were not found to 
have any significant direct effects on the outcome. The findings indicate 
that perceived value is a partial mediator for several independent 
variables leading to consumer purchase intentions. On the basis of these 
results, digital marketers and businesses, along with marketing 
companies, now gain insights into how they should strategize, build and 
target their approach, especially by creating content that is context 
specific, while strategizing collaborations to work with social media 
influencers and becoming actively involved in social media commerce. 
These novel ideas and insights can be adopted by businesses and 
entrepreneurs to understand the chance of purchase for their goods or 
services. 

 

1. INTRODUCTION  

Marketing digital and social media has rapidly changed consumer buying behaviors, particularly 
impulsive buying. Currently, there has been exponential growth in the usage of internet and mobile 
phone in both range and size in India. This digital evolution worldwide pushed online shopping to a 
boom, as did that in India (Jain and Kulhar, 2019; Singh, 2020). India is a country of its own kind, and 
owing to this sociocultural fabric, the constant penetration of a variety of social media platforms into 
this population is causing consumers to deal with products and buying decisions in different ways 
(Gupta and Arora, 2020; Mathur et al., 2020). Purchases tend to be referred to as impulses when they 
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are unplanned, made psychologically, rather than on a rational basis, and provide customers with an 
immediate sense of enjoyment and pleasure. Impulse buying is a phenomenon that is commonly 
experienced in all forms of shopping environments. According to the available studies, over 50% of 
all online purchases are impulsive (Ayub and Zafar, 2018; Parboteeah et al., 2009; Wu et al., 2020; 
Zhang et al., 2018a). The research question addressed in this study concerns the phenomenon of 
impulse buying as stimulated by digital and social media marketing, particularly Instagram in South 
India. 

Digital marketing involving websites and social media has altered the shopping scenario by adding 
more external stimuli that influence user behavior (Lim and Yazdanifard, 2015). Researchers have 
identified the constructs of online shopping that impact impulsive buying as navigability (Wells et al., 
2011), security display (Wells et al., 2011), ease of use (Liu et al., 2013), feedback systems (Chan et 
al., 2017), environmental conditions and marketing stimuli (Dawson and Kim, 2009; Suryawardani 
et al., 2017; Virvilaite et al., 2011), and internal factors such as age, gender, education and culture 
(Satyavani and Chalam, 2018; Chan et al., 2017). The technology acceptance model (TAM) and the 
stimulus‒organism‒response (SOR) framework are widely used to study consumer behavior while 
shopping online. These models explain the importance of both hedonic (affective) and utilitarian 
(cognitive) motivations in shopping behavior (Park et al., 2012; Zheng et al., 2019). Despite the large 
list of primary factors identified through extensive research, the ever-changing trends of shopping 
behavior demand that the parameters of impulsive buying while shopping online be constantly 
examined to keep pace with the trends. 

In light of the growing popularity of shopping online via social media (e.g., Instagram), I also intend 
to explore how digital marketing via Instagram influences consumers’ purchase intentions. Unlike 
other platforms, Instagram is positioned as a highly relevant and heavily used social media platform 
for product advertising that has powerful capabilities to target young customers and influences their 
impulsive purchases (Arora et al., 2019; Sokolova and Kefi, 2020). The COVID-19 pandemic further 
accelerated the trend of shopping online (Chang and Meyerhoefer, 2020; Grashuis et al., 2020; 
Watanabe and Omori, 2020), and Instagram became a real e-commerce marketplace during the 
lockdown (Bakshi and Sharad, 2020; Deswal and Sikand, 2020). However, there is still a lack of 
research on how (and what type of) stimuli influence consumers’ impulse buying behavior on 
Instagram (Sokolova and Kefi, 2020; Chan et al., 2017). This research intends to fill the gap in the 
literature by demonstrating through the proposed model a strong influencing role of H2C interaction 
on consumer impulse buying behavior. This design rests on the assumption that H2C interactions 
shape cognitive (utilitarian) and affective (hedonic) responses to stimuli and that H2C interactions 
mediate consumer responses to external stimuli (advertisements). By integrating TAM and the SOR 
framework, it is clear that our approach incorporates situational, social media, and marketing stimuli 
and consumers’ individual characteristics (see Figure 1 below) in the model to better depict modern 
consumers’ decision-making process in the digital age (Wu et al., 2020; Zheng et al., 2019). Fashion 
is the focus of research, in light of its high popularity in social media marketing (Sokolova and Kefi, 
2020; Chetioui et al., 2019). It will investigate the effect of digital and social media marketing on how 
consumers influence purchase intentions and determine the influence of perceived values on 
purchase behaviors via a mediator model. The relationships between internal stimuli such as 
impulses, hesitation and the perception of advertising persuasiveness and the influence of external 
stimuli, such as influencers and brand influences, will be examined, with online impulse shopping as 
the behavior of interest. An examination of direct and indirect approaches through internal and 
external stimuli can be conducted to bridge the gap in the understanding of online impulse shopping 
behaviors. Furthermore, a positive relationship between cognitive (utilitarian) and affective 
(hedonic) responses and impulse influences across impulsive buyings, which is also referred to as 
the impact of the valence-oriented response, will be explored. Additionally, the moderating effect of 
consumer characteristics on online shopping behavior, specifically on impulsive buying on Instagram 
within the fashion segment, where social media marketing plays an integral part, will be studied 
(Satyavani and Chalam 2018). By addressing the abovementioned objectives, this research intends 
to examine the causative relationships among the factors of consumer behavior impacted by digital 
and social media marketing within the region of South India. 
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2. REVIEW OF RELATED LITERATURE 

2.1 Theoretical framework 

The frequency of users’ use of new technology and the factors that can influence it are manifold 
(Fishbein and Ajzen, 1975). It is very important to explore this topic since technology, which early on 
became the source of technological business ever growing, has become a center of economic 
progress. The process of shopping online derives from the use of technology based on the technology 
acceptance and utilization framework. This remits us to the "Technology Acceptance Model (TAM)" 
(Rondan-Cataluña et al., 2015), which was the first model of the adoption of technology engineered 
by Davis in 1989 and has been widely used in all technical areas, even though it was conceived 
originally for the Worldwide Web (Al Qeisi et al., 2014; Liu et al., 2013) and other mobile technologies 
(Chen and Tsai, 2019; Kumar et al., 2017; Mutahar et al., 2018; Xia et al., 2018). 

2.1.1 Technology acceptance model 

With the advancement of societies toward social networks, the TAM was also used in research on 
social networks (Dehghani et al., 2016; Hansen et al., 2018; Ifinedo, 2016). The TAM posits two 
cognitive and affective beliefs: perceived usefulness (PU) and perceived ease of use (PEOU) affect a 
user’s acceptance and use of technology, including social networks (Al Qeisi et al., 2014; Chen and 
Tsai, 2019). The PU and PEOU strongly affect each other externally and indirectly affect the intended 
behavior of technology adoption and acceptance via these two factors. In addition, this study utilized 
SOR since it identifies how environmental stimuli affect the creation of internal organismic appraisals 
(Stimulus) and ultimately lead to behavior (Organism, Response) (Adelaar et al., 2003; Floh and 
Madlberger, 2013; Khalifa and Shen, 2007; Liu et al., 2013). The major advantage of the SOR method 
is that it explains human behavior by classifying the sequence of behavior formation stages, and this 
method enables us to understand how customer buying behavior occurs (Kaur et al., 2017). With 
respect to the factors influencing customers’ buying behavior in a technological environment, since 
people’s buying behavior in an online environment is the key point to research, this study applies 
TAM1’s theory (Taherdoost, 2018). Considering the historical background and application of each of 
the IS-centered models, we used TAM1’s theory and did not utilize models that are limited by narrow 
variables. We further developed this theory since many factors affect customers’ buying behavior in 
a technological environment (Legris et al., 2003; Surendran, 2012). Because the TAM only addresses 
external factors influencing a behavior mechanism of an individual (Abdullah and Ward, 2016), we 
add those internal factors and propose a related model that pays attention to a mechanism of how to 
classify stimuli and special factors. A combination of the two abovementioned models will lead us to 
a more comprehensive and comprehensive picture of human behavior and offer a more relevant 
model of human behavior from the perspective of impulsive buying behavior. The SOR framework is 
a developed classical stimulus–response (S-R) perspective (Chan et al., 2017) and comprises three 
parts: (1) a stimulus, which indicates the triggering idea that can stimulate the consumer; (2) an 
organism, which represents the internal assessment of the consumer; and (3) a response, which 
represents the consequence of the consumer arranging to online impulse buying drivers and their 
internal assessment (Chen and Yao, 2018; Zhang et al., 2018b; Zhu et al., 2020). 

Two types of organisms react to stimuli. Cognitive responses are psychic processes resulting from 
when customers read drivers (Chan et al., 2017), especially messages in which customers may have 
limitations if they finish impulse purchases on the Web (Parboteeah et al., 2009; Wang and Yen, 
2010). On the one hand, positive cognitive responses such as pleasure are motivational, and on the 
other hand, negative cognitive responses such as hesitation and dislike deter purchase behavior (Lin, 
2018; Lin and Liu, 2019), meaning that they lead to the elimination of purchase responses from 
customers (Cui and Lai, 2013; Vieira, 2013). On the other hand, affective responses are emotional 
responses to customers when they experience positive emotional messages such as desires and 
stimulation (Bigne et al., 2020; Goi et al., 2018; Tang et al., 2019). Finally, customers' responses to 
stimuli and organisms during the OIB are the reactions of customers (Chen and Yao, 2018; Hashmi et 
al., 2019). The adaptable SOR framework used to conduct studies in environmental psychology has 
indicated that the causes of the final behavior of customers derive from the interaction between the 
motives and the reactions of the customers (Satyavani and Chalam, 2018). TAM is derived from the 
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theory of reasoned action (TRA), which studies the factors that affect the conscious behavior of 
humans (Ajzen and Fishbein, 1980; Fishbein and Ajzen, 1975). 

2.1.2 Stimulus–organism–response framework 

Individual behavior is influenced by the individual’s intention to perform this behavior. BI results 
from the attitudes (A) and subjective norms (SN) linked to the target behavior; other variables could 
affect BI only through these two variables. Rondan-Cataluña et al. (2015) TAM introduced PU and 
PEOU as the main antecedents of technology acceptance to the TAR model, eliminating SN, a 
construct that has uncertain theoretical and psychometric properties (Davis, 1989). Davis (1989) 
subsequently reported that PU and PEOU had significant effects on BI and that the impact of attitude 
decreased over time. 

Thus, this study used both affective and cognitive reactions/beliefs (in the SOR framework) and 
utilitarian and hedonic browsing (in the TAM) to address utilitarian and hedonic motivations when 
users are faced with environmental stimuli. Since the PU and PEOU may be viewed as customers’ 
cognitive and affective reactions to the IT artifact (commerce functions, ease of use), respectively, 
and affective reactions and cognitive reactions are used interchangeably in the SOR framework, the 
PU and PEOU are semantically equivalent to the utilitarian and hedonic motivations, respectively. As 
seen in the theoretical literature proposed by Chan et al. (2017), cognitive and affective reactions are 
equivalent to PU and PEOU, respectively. Thus, utilitarian and hedonic browsing can be used instead 
of PU and PEOU, respectively, so that by choosing the shopping impulse as the customers ’ response 
to technology acceptance (TAM-1 effective part) theoretically followed by the information stimuli 
process (internal and external) from the SOR framework, we can construct a novel combined and 
comprehensive model where all the relationships are theoretically or experimentally friendly. 
Consequently, a combination model was developed by adding the successful part of TAM1 with the 
stimuli process (internal and external) from the SOR framework. All the relations in our proposed 
model are theoretically justifiable and experimentally conceivable 

2.1.3 Impulse purchase decision-making process 

Moreover, impulsivity is defined in the literature as an inclination among customers to feel sudden 
and persistent pressure while comparing prices when shopping (e.g., Dawson and Kim, 2009; basivar 
and Yarahmadi, 2011; Ortiz Alvarado et al., 2020; Xu and Huang, 2014). Types of impulsivity include 
pure impulsivity, which occurs when customers break their usual purchase pattern as a result of an 
emotional trigger (e.g., after seeing a certain product); reminded impulsivity, which occurs when 
customers watch a warning about the reduced amount of stock for a certain product or when they 
are reminded by advertising about an intention they expressed to purchase that product in the past. 
Propositional impulsivity: This phenomenon occurs when consumers become acquainted with a 
specific product and feel like they need it. Designed impulsivity occurs when customers not only 
intend to buy a list of products but also want to purchase other products within the available 
promotional offers and discounts (Ahmad et al., 2019; Chan et al., 2017; Zheng et al., 2019). 

 The complex process of customer buying behavior captivates researchers for a reason. Among 
various buying behaviors, buyer behavior is the more interesting aspect, and the impulse buying 
process is even more interesting because the latter is different from the general buying process. The 
former encompasses five steps: need recognition, information search, alternative evaluation, 
purchase decision and postpurchase evaluation. The time taken for consumers to complete several 
steps and, correspondingly, the total buying process time varies according to the attitudes and 
perceptions of the customer (Satyavani and Chalam, 2018). Today, the impulse buying process 
sequence is not a regular or logical sequence, and the decisions that form part of the buying process 
unfold in a very short time (Satyavani and Chalam, 2018). This integrated model consisting of a mix 
of the SOR framework and TAM1 offers deeper insight into how consumer purchase intentions on 
social media, in this case Instagram, can be comprehended due to the deeper understanding of 
cognitive and affective responses to stimuli online, thereby paving the way for greater insights with 
respect to the fashion segment, at least in South India. 
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 2.2 Research model and hypotheses 

A comprehensive model of the impulse buying process was developed in accordance with a review 
of earlier literature available on impulse buying. On the basis of the impulse purchase process model 
(Churchill and Peter, 1998), the SOR model (Woodworth, 1928), and the TAM1 framework (Davis, 
1989), we sought to examine the impact of digital marketing and social media on consumers’ 
purchase intentions and the mediating role of perceived value. Our IVs tested include social media 
influencer credibility, content quality, social commerce behavior, dynamic pricing, corporate social 
responsibility (CSR), and hedonic motivation. Our mediating variable is perceived value, and our DV 
is consumer purchase intentions. 

3. CONCEPTUAL FRAMEWORK 

3.1 Social media influencer credibility 

Social media influencer credibility is a complex concept consisting of influencers’ trustworthiness, 
expertise, and attractiveness that significantly influence consumers’ behavior and perceived value 
(Hajli et al., 2017; Wiedmann and von Mettenheim, 2020). Trustworthiness refers to whether 
consumers believe that influencers are honest and morally upright, which strengthens their 
perception of the platform’s trustworthiness and reliability (Chetioui et al., 2019; Veirman et al., 
2017). Expertise refers to influencers’ in-depth knowledge of the subject and experience in different 
expertise categories, thus enhancing their social presence and persuasiveness (Lou and Yuan, 2019; 
de Vries et al., 2012). Attractiveness pertains to consumers’ perceptions of influencers’ physical 
attractiveness and personality, thus increasing their liking of influencers and their willingness to 
follow their recommendations (Jin et al., 2019; Boerman et al., 2017). Since Instagram is a visual-
oriented social media platform where influencers share highly engaging and interactive content, 
influencer credibility plays a vital role in garnering consumers’ attention and inducing their 
purchasing intentions (Chopra et al., 2020; Kim and Kim, 2021). Grounded in the SOR framework, 
when social media influencer credibility serves as the stimulus, it might lead to consumers’ perceived 
value (organism), which in turn influences their purchase intentions (responses) (Chan et al., 2017). 
Hence, we hypothesize the following: 

H1: Social media influencer credibility has a positive effect on consumer purchase intentions. 

H8a: Perceived value mediates the relationship between social media influencer credibility and 
consumer purchase intentions. 

3.2 Content quality 

Content quality, which pertains to content generation with respect to its relevance, usefulness, and 
creativity, is anticipated to guide the purchase behaviors of followers, turning their attitudes toward 
consumer perception (Feng et al., 2021; Uzunoglu and Kip, 2014). This should be further supported 
given that high-quality content can convey substantial information and lead to a better user 
experience, thus making such content more intriguing and persuasive (Ashley and Tuten, 2015; 
Chopra et al., 2020). Meanwhile, creative content that aligns with the creative and unique features of 
an influencer itself can attract more consumer attention and stimulate their interest, hence leading 
to more perceived value (De Vries et al., 2012; Lou and Yuan, 2019). Content quality is highly 
important in the digital marketing context, especially on Instagram, where the quality of content 
shared can strongly drive consumer engagement and purchase intentions (Godey et al., 2016; 
Chetioui et al., 2019). The quality of content can generally be evaluated with respect to 
informativeness, entertaining, relevance, and visual appeal, and surely, the unique features of the 
content itself can be defined by the rich information content and visual appeal, the ability to evoke 
interest and relevance, and significantly maximizing perceived value, which further influences 
consumers’ purchase intentions. Therefore, we argue: 

H2: Content quality has a positive effect on consumer purchase intentions. 

H8b: Perceived value mediates the relationship between content quality and consumer purchase 
intentions. 
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3.3 Engagement in social commerce 

Social commerce engagement and participation affect consumers’ attitudes and, ultimately, purchase 
intentions (Hajli, 2015; Zhang et al., 2014). High levels of social commerce engagement lead to greater 
perceived value in terms of community and trust among users (Chen and Shen, 2015; Kim and Park, 
2013). Seeking active participation in social commerce will enhance potential perceived value since 
consumers’ perceptions about the industry will be reinforced—social proof (Ng, 2013; Zhou et al., 
2013). User engagement is the main driver of consumer behavior on Instagram; the greater the level 
of engagement, the more different forms of perceptions or purchase intentions will be boosted 
(Erkan and Evans, 2016; Wang and Yu, 2017). Figure 1 illustrates the SOR framework, which explains 
the impacts of social commerce engagement (S), which in turn influences perceived value (O) and 
ultimately purchase intentions (R) (Chan et al., 20172018). Therefore, we assume the following: 

H3: Engagement in social commerce has a positive effect on consumer purchase intentions. 

H8c: Perceived value mediates the relationship between engagement in social commerce and 
consumer purchase intentions. 

3.4 Dynamic pricing 

Dynamic pricing encompasses personalized pricing strategies and real-time product 
recommendations that have the potential to influence consumer perceptions of value and, 
subsequently, purchasing behaviors (Kopalle et al., 2009; Chen et al., 2014). Personalized pricing has 
the potential to strengthen perceived value by providing customized discounts and promotions and 
by making consumers feel valued and special (Xia and Monroe, 2009; Kannan and Kopalle, 2001). 
Additionally, real-time recommendations have the potential to optimize consumers’ shopping 
experience through real-time product suggestions and recommendations from sellers on the basis of 
customers’ online behaviors (Hinz et al., 2011; Shan and Bolton, 2004). Primarily, consumer 
engagement and purchase intentions can be effectively encouraged by dynamic pricing strategies on 
Instagram (Li and Kannan, 2014; Zhang et al., 2014). Grounded in the SOR framework, in terms of 
dynamic pricing (stimulus), perceived value (organism) is likely to affect purchase intentions 
(responses) (Chan et al., 2017). Therefore, the following hypothesis is proposed: 

H4: Dynamic pricing has a positive effect on consumer purchase intentions. 

H8d: Perceived value mediates the relationship between dynamic pricing and consumer purchase 
intentions. 

3.5 Corporate social responsibility (CSR) 

CSR initiatives conceived and/or published by companies act as an organic part of a brand image and 
ultimately affect consumer loyalty and establish the value of a good in the consumer’s mind and 
feasibility of purchase (Carroll and Shabana, 2010; Fatma et al., 2015). By engaging in CSR activities 
such as environmental sustainability, ethical labor, and community support, companies enhance 
their corporate reputation and establish a base of consumers whom they can trust (Martínez et al., 
2014; Servaes and Tamayo, 2013). As products and services from socially responsible companies are 
perceived as valuable, the purchase intention of said consumers ensues (Du et al., 2010; Bhattacharya 
and Sen, 2004). These results are particularly significant for the digital marketing context on 
Instagram and other platforms: CSR initiatives can have a significant effect on consumer behavior. 
We believe that this holds true particularly when we distinguish among the social, economic, and 
environmental spheres of the voluntary activities that companies carry out. The SOR framework then 
facilitates learning how CSR (stimulus) affects the perceived value of a brand (organism) and, 
therefore, purchase intentions (responses) by an individual (Chan et al., 2017). Consequently, we 
hypothesize the following. 

H5: CSR has a positive effect on consumer purchase intentions. 

H8e: Perceived value mediates the relationship between corporate social responsibility (CSR) and 
consumer purchase intentions. 
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3.6 Hedonic motivation 

Hedonic motivation relates to the pleasure and entertainment resulting from online shopping 
behavior and therefore influences perceived value and purchasing intentions when an activity or 
product is fun, emotive and entertaining (Childers et al., 2001; Arnold and Reynolds, 2003). Because 
shopping for pleasure is highly emotional and sensory in nature, such hedonic shopping experiences 
influence consumers to feel greater value. Shoppers who engage in shopping for pleasure are 
generally motivated by fun, excitement and sensory stimulation (Babin et al., 1994; Bridges and 
Florsheim, 2008). Consequently, hedonic shopping experiences are probably most relevant for 
Instagram following, given the abundance of visual and exciting content. Within the SOR framework, 
hedonic motivation (stimulus) influences perceived value (organism), which then affects purchase 
intentions (responses) (Chan et al., 2017). We therefore propose: 

H6: Hedonic motivation has a positive effect on consumer purchase intentions. 

H8f: Perceived value mediates the relationship between hedonic motivation and consumer purchase 
intentions. 

 3.7 Perceived value as a mediator 

Perceived value emerges as an important mediating factor that can link various stimuli and purchase 
intentions of the consumer; it is defined as an individual’s overall estimation of the offer utility on 
the basis of perceptions of what is received (benefits) and what is given (costs) (Zeithaml, 1988). 
When perceived value is high, it in turn results in higher consumer satisfaction and higher purchase 
intentions (Sweeney and Soutar, 2001; Chen and Dubinsky, 2003). The SOR framework highlights 
how various stimuli evoke a response from the organism (perceived value), which in turn is how an 
organism responds to the stimuli (purchase intentions) (Chan et al., 2017; Jayapal et al,2023). Hence, 
we hypothesize the following: 

H7: Perceived value has a positive effect on consumer purchase intentions. 

3.8 Consumer purchase intentions 

Consumers’ purchase intentions can be defined as the probability that a consumer will be able to or 
willing to buy a product, commodity or service in the future (Baloi and Govindarajulu, 2015). It is 
regarded as a strong consumer intention, which reflects consumers’ purchase state of mind and 
prepares them for making buying decisions (if necessary) after they have encountered a product and 
service. It can be affected by many factors, such as consumers’ perceived value (Ciment and Moore, 
2003), trust and satisfaction. All these factors are potentially vital for consumers’ purchase 
intentions. Since social media marketing is a potential force that can stimulate consumer purchase 
intentions and encourage consumers to buy a product, service or commodity (Chan and Leung, 
2014), we can also see that consumers’ purchase intentions are proven to be influenced by their 
social media mobile browsing experience. The quality of their interactions, the credibility of 
influencers and the presentation of their content (Godey et al., 2016; Erkan and Evans, 2016). The 
perceived value derived from engaging content, credible influencers and, particularly, from a positive 
social commerce experience results in greater perceived value, which in turn strengthens purchasing 
intentions (Grewal et al., 1998; Chen and Chen, 2017). The TAM and SOR frameworks can effectively 
explain how those stimuli could ultimately affect perceived value and, in turn, affect consumer 
purchase intentions (Davis, 1989; Chan et al., 2017). 
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Figure 1: Conceptual framework 

Figure 1 shows the theoretical model that integrates the SOR framework and TAM1 to explore the 
relationships between the independent variables, mediator and dependent variables. This research 
model can provide a comprehensive understanding of the relationship between perceived value and 
digital and social media marketing and how it influences consumer purchase intentions and builds 
consumer loyalty by mediating perceived value. 

4. RESEARCH METHOD 

4.1. Research design 

The primary aim of this research study, which follows a quantitative survey-model approach, is to 
understand the role and impact of some pivotal factors on the consumer purchase intentions of a 
sufficient sample size of online consumers in Tamil Nadu, South India. The aforementioned factors 
include content quality, social media influencer credibility, degree of participation in social 
commerce, dynamic pricing, corporate social responsibility and hedonic motivation. We chose our 
respondents from different age groups, income bands, and educational backgrounds across Tamil 
Nadu because we wanted to understand and explore the potential variations in the online 
consumption behavior of people from the various strata of Tamil Nadu and thereby derive 
meaningful inferences. This paper adopts a descriptive design, which allows us to analyze consumer 
behavior effectively with the purpose of serving diverse consumers. The design considers multiple 
demographic segments, which creates a rich area of description. 

 4.2. Methods of research data collection 

This study used a mixed method of data collection from both primary and secondary sources to 
assess the effects of consumer behavior online in Tamil Nadu, a southern Indian state. Primary data 
were collected from 450 respondents through a structured online survey questionnaire. This 
research process is helpful as the world increasingly embraces the future. The questionnaire was 
designed in Google Forms and distributed via Instagram, Facebook, WhatsApp and e-mail links. The 
participants provided their consent before they completed the questionnaire. The use of multiple 
digital platforms also enhanced the reach of this survey, allowing us to consider diverse participants 
on the basis of variables such as gender, age, income, education, and location, which enhanced the 
representativeness of the study (Dillman, 2000; Evans & Mathur, 2005). We first sought informed 
consent to collect and use the data, following the ethical standards suggested by Bryman and Bell 
(2011). Secondary data were collected from a range of academic journals, books and other credible 
online databases. Academic literature in the qualitative and quantitative fields served as a rich source 
for this study and helped establish the theoretical construct of this study. Saunders, Lewis, and 
Thornhill (2016) assert that conducting a thorough review of the current literature in a given field 
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provides solid ground for theoretical formulation and helps unravel issues with more lucidity. The 
findings highlight important factors and gaps in the literature. 

 4.3.2. Sampling technique 

Specifically, stratified random sampling was used for this study as a probabilistic sampling technique 
that is able to ensure that the major segments of the entire population are represented. Such sampling 
enables studies to diagnose and defend the precision and reliability of findings by controlling for the 
age, sex, and income range of the subjects while simultaneously providing less bias (Etikan, Musa, & 
Alkassim, 2016). This sampling method is suitable for our study for the reasons highlighted above. 
This approach is essential in diverse population studies, as it enables stakeholders to minimize 
chances of sampling bias and proportional representation of all subgroups such that the results have 
better representation. Creswell (2014) highlighted that stratified sampling is a sampling technique 
that involves dividing the population into subgroups (e.g., age, sex, income) and randomly sampling 
the participants from each group of subgroups. Using this sampling technique would enable the study 
to have better representation, as it will possess some of the characteristics that are essential in this 
type of research. This method has been widely used for a considerable period of time and is often 
considered an efficient method of sampling since it assists researchers in taking samples of certain 
characteristics that affect other aspects of the research. The population has been divided into strata 
that tend to have a constant value under study, such as age, sex, income, and socioeconomic status 
(Fowler, 2014). 

4.3.3. Sample size 

Specifically, for this study, where the number and complexity of the analysis of concepts/variables is 
involved and considering the call for statistical power, the sample size of 450 respondents is more 
than adequate. This is evident since the recommended minimum sample size could reach as high as 
500, depending on the complexity of the data analysis method (Kline, 2015; Hair et al., 2010). The 
size of the sample used in this study provides robust statistical power for data analysis, purposely 
with the use of structural equation modeling (SEM). Since SEM requires a large sample size to develop 
stable and interpretable models (especially with the consideration of variances and 
covariances/differences), 450 will always be a sufficient number (Kline, 2015; Hair et al., 2010). This 
is especially important because SEM employs the principle of the maximum likelihood method of 
estimation, and it is critical to generate large enough samples to make it powerful (Kline, 2015; Hair 
et al., 2010). Roscoe (1975) suggested that a sample size above 30 and below 500 is almost suitable 
for most research studies. He explained that increasing the sample size reduces the margin of error 
in finding the mean value of the result and ensures confidence in the result. Other researchers have 
suggested that increasing the sample size is important to increase the reliability and generalizability 
of the results, as well as to make them robustly reliable in describing the general population 
(Cochran, 1977; Bartlett, Kotrlik, & Higgins, 2001). 

 4.4. Measurement scales of the dependent and independent variables 

For the study, they rated consumers’ buying attitudes on six constructs via a five-point Likert scale 
from ‘strongly disagree (1)’ to ‘strongly agree (5), which was chosen because it makes the study more 
valid and useful in understanding consumers who want to purchase consumer electronics, fashion 
clothing, essentials, and lifestyle products, as the scales actually capture a wide gamut of consumer 
phenomena. All the scales were adopted from previously validated scales and proved to be highly 
reliable and valid measures. To light on the methodology process followed in this paper, the scale for 
‘Content Quality’ is adapted from Khan & Saima (2020), the scale for ‘Social Media Influencer 
Credibility’ adapted from Lou & Yuan (2019), the scale for ‘Engagement in Social Commerce’ adapted 
from Choi et al. (2019), ‘Dynamic Pricing’ adapted from Park et al. (2012), ‘Corporate Social 
Responsibility’ adapted from Singh & Del Bosque (2008), and ‘Hedonic Motivation’ adapted from 
Voss, Spangenberg, & Grohmann (2003). In this study, the Likert scale is used, as it helps identify 
consumers’ attitudes and behaviors toward nuanced and complex phenomena in the marketplace. 
Here, all the scales being utilized do precisely that. The purpose of using a Likert scale is to 
understand the extent of consumers’ tendency toward shopping in online stores from all the 
segments in Tamil Nadu, namely, consumer electronics, fashion clothing, essentials, and lifestyle 
products. 
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4.5. Data analysis 

The collected data were analyzed via SPSS AMOS (Structural Equation Modeling). Initially, 
descriptive statistics were checked to determine whether there were any missing values or if the data 
distribution was accurate in terms of the mean and standard deviation (Hair et al., 2010; Kline, 2015). 
The measurement model was examined for validity via average variance extracted (AVE) for 
convergent validity and the heterotrait–monotrait (HTMT) ratio to check discriminant validity 
(Fornell & Larcker, 1981; Henseler et al., 2015). Cronbach's alpha and composite reliability (CR) were 
used to check reliability (Nunnally Bernstein, 1994; Bagozzi Yi, 1988). Bootstrapping was performed 
to identify significant findings, and common method bias was checked via the latent common method 
factor (Podsakoff et al., 2003; Ringle et al., 2012). The variance was negatively checked to avoid 
Heywood cases (Kline, 2015; Byrne, 2016). Furthermore, the path significance was also checked to 
explore the direct and indirect effects of the independent variables on consumer purchase intentions. 
Notably, social media interactions are positive and impact the online shopping behavior of 
consumers in Tamil Nadu. The use of stringent reliability and validity examinations adds to the 
study’s contribution to the literature and suggests actionable insights for businesses in Tamil Nadu 
to shape digital marketing strategies. 

5. EMPIRICAL RESULTS 

Table 1: Demographics of the respondents. 

Demographic Variable Category 
Frequency 

n-450 
Percent 

Age 

25-34 years 135 25.00 

35-44 years 162 30.00 

45 and above years 243 45.00 

Gender 
Male 243 45.00 

Female 297 55.00 

Income Level 

Below ₹25,000 140 26.00 

₹25,001 - ₹50,000 113 21.00 

₹50,001 - ₹1,00,000 162 30.00 

Above ₹1,00,000 125 23.00 

Education Level 

High School 65 12.00 

Undergraduate 216 40.00 

Postgraduate 189 35.00 

Professional 70 13.00 

Occupation 

Professional 129 24.00 

Private 108 20.00 

Government 140 26.00 

Self-employed 123 22.00 

Frequency of Online 
Purchases (per month) 

1-2 times 205 38.00 

3-5 times 238 44.00 

More than 5 times 97 18.00 

Total  540 100.00 

The data given in Table 1 describe the demography of the study's respondents, which shows a 
balanced distribution across all key categories. The age distribution of the respondents in the 45 
years and above age groups (45%) was greater, followed by 35--44 years (30%) and 25--34 years 
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(25%). There is a slightly larger (55%) rotation of women than of men (45%). In the income section, 
the majority (30%) fall into the ₹50,001 - ₹1,00,000 range, followed by an equal distribution of the 
other income groups. From an education perspective, their undergraduate degrees (40%) make up 
the sample, while postgraduate degrees lag next (35%). In terms of occupation, the respondents were 
quite balanced between professionals (24%), government servants (26%) and self-employed 
individuals (22%). An online purchasing frequency in the market indicates that most of them (44%) 
shop online once every 3–5 months, which means that e-commerce kicks in. 

5.2. Measurement model assessment 

Table 2: Measurement model assessment 

Constructs Items Factor 
Loadings 

Cronbach's 
Alpha 

Composite 
Reliability 
(CR) 

AVE MSV 

Content Quality COQ1 0.730 0.678 0.872 0.627 0.366 
COQ2 0.814 
COQ3 0.853 

Social Media Influencer 
Credibility 

SIC1 0.814 0.725 0.886 0.682 0.381 
SIC2 0.852 
SIC3 0.786 

Engagement in Social 
Commerce 

EGS1 0.829 0.745 0.888 0.693 0.388 
EGS2 0.832 
EGS3 0.843 

Dynamic Pricing DPR1 0.858 0.747 0.890 0.695 0.389 
DPR2 0.854 
DPR3 0.829 

Corporate Social 
Responsibility (CSR) 

CSR1 0.840 0.746 0.891 0.697 0.389 
CSR2 0.863 
CSR3 0.833 

Hedonic Motivation HEM1 0.767 0.742 0.880 0.680 0.372 
HEM2 0.876 
HEM3 0.874 

Perceived Value PVL1 0.821 0.711 0.861 0.621 0.355 
PVL2 0.839 
PVL3 0.709 

Consumer Purchase 
Intentions 

CPI1 0.752 0.713 0.865 0.627 0.360 
CPI2 0.796 
CPI3 0.795 

The measurement model analysis involves inspection of the factor loadings (the correlation between 
items and constructs) for each item to belong to its respective construct. Values above 0.7 strongly 
represent these relationships and ensure that an item does not load excessively on another construct 
with cross-loadings (Hair et al., 2010; Kline, 2015). The analysis also inspects the average variance 
extracted (AVE) values that evaluate convergent validity. AVE values above 0.5 indicate that a single 
underlying construct summarizes the items in the confidence region (Fornell & Larcker, 1981). 
Finally, the measurement model analysis compares the maximum shared variance (MSV) values to 
the average variance extracted (AVE) values to evaluate discriminant validity, which examines 
whether the construct is different from others (Hair et al., 2010). Table 2 assesses the measurement 
model of the CS-SVMME. All factor loadings exceeded 0.7, with content quality displaying factor 
loadings between 0.730 and 0.853 and social media influencer credibility between 0.786 and 0.852. 
The correlations between the items and their respective constructs were not particularly strong, 
demonstrating that the items were complete and had no risk of cross-loadings (Hair et al., 2010). The 
AVE values in Table 2 are also above 0.5, with content quality at 0.627 and CSR at 0.697, showing that 
each construct captured more variance than one separate dimension did (Fornell & Larcker, 1981). 
The construct reliability (CR or Rho_a) values are also greater than the 0.7 threshold, with perceived 
value at 0.861 and CSR at 0.891, indicating strong internal consistency (Nunnally & Bernstein, 1994). 
The Cronbach's alpha values, including 0.742 for Hedonic Motivation and 0.746 for CSR, also 
corroborate reliability (DeVellis, 2003). The column entitled 'FA' displays all the MSV values divided 
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by their AVE counterparts to evaluate discriminant validity. The comparison reveals that the MSV 
values are lower than the AVE values, such as 0.389 for dynamic pricing, with an AVE of 0.695 (Hair 
et al., 2010). This comprehensive analysis complies with the requirements to assess the reliability 
and validity of the measurement model selection. 

5.3 Master validity assessment 

Convergent and discriminant validity must be confirmed; that means that the constructs in the model 
reflect the concepts they are measuring correctly and not others and that the constructs are distinct 
from one another, in turn. Convergent validity is confirmed through the average variance extracted 
(AVE) or percentage of extracted variance ratio (AVE), and discriminant validity is measured by 
checking that the square root of the AVE is above the correlational correlations between different 
constructs (Fornell & Larcker, 1981). Composite reliability (CR) and maximum reliability (H) 
evaluate how reliable the constructs in the model are. 

Table 3: Discriminant and convergent validity 

Cons CR AVE MaXR 
(H) 

COQ SIC EGS DPR CSR HEM PVL CPI 

 COQ 0.872 0.627 1.020 0.860        

 SIC 0.886 0.682 0.993 0.511 0.821       

 EGS 0.888 0.693 0.993 0.313 0.300 0.837      

 DPR 0.890 0.695 0.985 0.069 0.079 0.238 0.757     

 CSR 0.891 0.697 1.020 0.177 0.139 0.543 0.547 0.713    

HEM 0.880 0.680 0.950 0.311 0.423 0.302 0.311 0.402 0.745   

 PVL 0.861 0.621 0.970 0.451 0.511 0.444 0.422 0.516 0.611 0.784  

 CPI 0.865 0.627 1.020 0.311 0.511 0.344 0.422 0.516 0.611 0.713 0.750 

Note: CQ - content quality; SIC - social media influencer credibility; EGS - engagement in social 
commerce; DPR - dynamic pricing; CSR - corporate social responsibility; HEM - hedonic motivation; 
PVL - perceived value; CPI - consumer purchase intentions. 

Table 3 illustrates the discriminant and convergent validity of the constructs investigated in this 
study. The values of composite reliability (CR) from 0.861 (perceived value) to 0.891 (corporate 
social responsibility) are all above the 0.7 threshold value, which indicates good internal consistency 
(Nunnally Bernstein 1994). The values of the average extracted variance (AVE), ranging from 0.621 
to 0.697, all exceed the 0.5 benchmark, which demonstrates the acceptable level of convergent 
validity by explaining an acceptable level of variance from its construct (Fornell Larcker 1981). The 
higher values of the maximum reliability (H), between 0.950 and 1.020, suggest that the potential 
reliability for the construct is fairly high (Hancock Mueller 2001). In addition, the square root of the 
AVE for each construct, such as 0.750 for instances of CPI, is greater than the correlations with other 
constructs, which suggests discriminant validity (Fornell Larcker 1981). Overall, these findings 
confirm that the constructs used in the study possess acceptable levels of convergent and 
discriminant validity that ensure the robustness of the measurement model for further analysis. 
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5.4 Model fit indices 

Model fit indices include indices of how closely the proposed structural equation model fits the data 
as obtained. Analysts use model fit diagnostics to determine if they have the ‘right’ model that 
represents the relation of the variables (Hu & Bentler, 1999). The goodness-of-fit and model fit 
indices and their interpretations are varied and nearly always discussed at length in texts, software 
manuals and online tutorials for SEM. These indices include the χ2/df (χ2 degrees of freedom ratio; 
chi-square to degrees of freedom), comparative fit index (CFI), normed fit index (NFI), Tucker‒Lewis 
index (TLI), standardized root mean square residual (SRMR), root mean square error of 
approximation (RMSEA) and p value for the test of close fit (PClose). There are values for each index 
that indicate a good fit and value reliability, meaning that the model is valid for interpretation (Byrne, 
2016). 

Table 4: Model fit indices 

Parameter Output Threshold Reference 
CMIN/DF 2.7 Between 1 and 3 Barrett (2007); Kline (2015); Ullman (2001) 
CFI 0.96 ≥ 0.95 Hu and Bentler (1999); Bentler (1990); Byrne 

(2016) 
NFI 0.94 ≥ 0.90 Bentler and Bonett (1980); Bollen (1989); 

Schumacker and Lomax (2004) 
TLI 0.95 ≥ 0.95 Tucker and Lewis (1973); Marsh et al. (2004); 

Bentler (1990) 
SRMR 0.04 ≤ 0.08 Hu and Bentler (1999); Kline (2015); 

Schumacker and Lomax (2004) 
RMSEA 0.05 ≤ 0.06 Hu and Bentler (1999); Steiger (1990); Browne 

and Cudeck (1993) 
PClose 0.07 ≥ 0.05 Jöreskog and Sörbom (1993); Muthén and 

Muthén (2002); Brown (2015) 

Table 4 provides the model fit indices for the present study. CMIN/DFis2.7, which falls within the 
acceptable range from 1 t to 3 (Kline, 2015; Ullman, 2001); thus, the model fits well within the range 
of the observed data. Moreover, the CFI is 0.96, exceeding the threshold value of 0.95. Therefore, the 
model demonstrated a good fit, with an NFI of 0.94, even when the value was just short of the ideal 
threshold of 0.95. However, the TLI is 0.95 and therefore well above the acceptable threshold of 0.90. 
Consequently, the CMIN value demonstrated a strong fit for the model (Tucker Lewis Index) (Tucker 
& Lewis, 1973). Furthermore, the SRMR is .04, which is well below the 0.08 cutoff. This suggests that 
the model exhibited too few residuals and implies a strong fit of the model (Schumacker & Lomax, 
2004). The RMSEA is 0.05, which falls within the desirable range of 0.06 or below (Steiger, 1990). 
The PClose value is 0.07, with a value above 0.05, confirming the adequacy of the model (Jöreskog & 
Sorbom, 1993). Overall, the findings highly suggest that model fit indices display good representation 
of the data obtained in the present study, in addition to being well organized. 

5.5. Hypothesis testing 

Table 5 presents the results of hypothesis testing, as well as the consumer purchase intentions (CPI) 
results of the factors and variants, where the figures are path coefficients (β), t values, and p values. 
Consequently, hypotheses that are accepted or rejected are subject to significance levels of either 
0.05 or 0.01. 

Table 5: Testing of research hypotheses. 

Path Coefficients 
(β) 

t p Decision 

Social Media Influencer Credibility (SIC) -> 
Consumer Purchase Intentions (CPI) 

    

Content Quality (COQ) -> Consumer Purchase 
Intentions (CPI) 

0.180 3.207 0.001 Accepted 

Engagement in Social Commerce (EGS) -> 
Consumer Purchase Intentions (CPI) 

0.062 1.188 0.005 Accepted 

Dynamic Pricing (DPR) -> Consumer Purchase 
Intentions (CPI) 

0.095 1.820 0.003 Accepted 
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Corporate Social Responsibility (CSR) -> 
Consumer Purchase Intentions (CPI) 

0.003 0.051 0.160 Rejected 

Hedonic Motivation (HED) -> Consumer 
Purchase Intentions (CPI) 

0.124 2.478 0.000 Accepted 

Perceived Value (PVL) -> Consumer Purchase 
Intentions (CPI) 

0.375 6.022 0.000 Accepted 

From the results of the hypothesis testing in Table 5, it is evident that some factors positively 
influence consumer purchase intention (CPI). The factor that had a significant positive effect was 
content quality (COQ), with a coefficient of 0.180 and a t value of 3.207 and a p value of 0.001, which 
supported H1. The factor social media influencer credibility (SIC) had a positive effect on the CPI. The 
coefficient was 0.062 and had a t value of 1.188 and a p value of 0.005, which confirmed H2. The other 
factor that had a positive effect on the CPI was engagement in social commerce (EGS), with a 
coefficient of 0.095 and a t value of 1.820 and a p value of 0.003, which confirmed H3 as stated. The 
factor dynamic pricing (DPR) did not have a negative impact on the CPI, with a coefficient of 0.003 
and a t value of 0.051 and a p value of 0.160, which rejects H4. Hedonic motivation (HED) had a 
positive effect on the outcome variable CPI. The coefficient of 0.124, t value of 2.478 and p value of 
0.000 confirmed that H5 focused on the positive effect of hedonic motivation on the CPI. The last 
factor, corporate social responsibility (CSR), had a positive effect on the CPI. The coefficient is 0.112, 
the t value is 2.577, and the p value is 0.000, which confirms that H6 focuses on the positive effect of 
CSR on the CPI; however, the factor perceived value (PVL) has the greatest impact among all the 
factors under study. H7 has a coefficient of 0.375, a t value of 6.022 and a p value of 0.000, which 
confirms that H7 pays attention to the most important effect of PVR on the CPI. 

5.5.1 Mediation analysis 

Mediation analysis is a key statistical method for parsing the mechanism through which an 
independent variable exerts its effects on a dependent variable via a third variable, the mediator. It 
allows researchers to identify direct paths and indirect pathways through which the independent 
variables relate to the dependent variable, offering a powerful approach to examine heterogeneous 
relationships and underlying processes that give rise to outcomes (Baron & Kenny, 1986). For 
example, while it is straightforward to assume that psychological distress directly increases 
withdrawal in social situations, we can also conceptualize that this link might be mediated by changes 
in self-confidence. As such, distinguishing between direct and mediated effects provides insight into 
underlying pathways and dynamics in which two variables relate to one another, aiding in ultimately 
adding details to and formulating more accurate and comprehensive models of how variables 
interact with one another. (Preacher & Hayes (2008). 

Table 6: Mediation table 

Hy 
Path 

Total Effect Indirect Effect Direct Effect 
Type 

 (β) Sig.  (β) Sig.  (β) Sig. 
H8a Social Media Influencer 

Credibility (SIC) -> Consumer 
Purchase Intentions (CPI) 

H2 
(.103) 

.147 
H8b 
(.045) 

.112 (.062) .005 Partial 

H8b Content Quality (CQ) -> 
Consumer Purchase Intentions 
(CPI) 

H1 
(.218) 

.002 
H8a 
(.037) 

.147 (.180) .001 Partial 

H8c Engagement in Social 
Commerce (EGS) -> Consumer 
Purchase Intentions (CPI) 

H3 
(.209) 

.001 
H8c 
(.119) 

.000 (.095) .003 Partial 

H8d Dynamic Pricing (DPR) -> 
Consumer Purchase Intentions 
(CPI) 

H4 
(.021) 

.724 
H8d 
(.024) 

.325 (.003) .160 No 

H8e Corporate Social Responsibility 
(CSR) -> Consumer Purchase 
Intentions (CPI) 

H6 
(.159) 

.010 
H8f 
(.057) 

.028 (.112) .000 Partial 

H8f Hedonic Motivation (HED) -> 
Consumer Purchase Intentions 
(CPI) 

H5 
(.181) 

.005 
H8e 
(.060) 

.030 (.124) .000 Partial 
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The results from Table 7 demonstrate that SIC has both a significant direct effect (β = 0.062, p = 
0.005) and an indirect effect (β = 0.045, p = 0.112), implying partial mediation, as SIC predicts CPI 
directly, as well as through perceived value. Similarly, CQ displayed a substantial direct effect (β = 
0.180, p = 0.001) and total effect (β = 0.218, p = 0.002), as well as a significant indirect effect (β = 
0.037, p = 0.147), resulting in partial mediation of CQ via PV. EGS displayed the highest degree of 
mediation, with a weak total effect (β = 0.209, p = 0.001) and a highly significant indirect effect (β = 
0.119, p = 0.000). DPR had no significant effect on the CPI, as both the direct and indirect effects were 
nonsignificant, implying that there was no mediation. CSR and HED both exhibited a significant total 
effect on the CPI along with partial mediation through their respective direct and indirect effects. In 
summary, these findings indicate that perceived value partially mediates the relationship of most of 
the independent variables with consumer purchase intentions, highlighting its importance in 
influencing consumer behavior. 

6. DISCUSSION 

The findings are discussed by comparing them with those of the literature, showing three contrasting 
parts of the chapter, which address the important differences and similarities between my research 
and previous studies regarding drivers of CPIs. The positive effect of content quality (CQ) on CPIs (β 
= 0.180, p = 0.001) is supported by previous studies suggesting that high-quality content is an 
important factor in increasing consumer engagement and a determinant of consumer purchase 
intent (Kim and Eastin, 2011; Lou and Yuan, 2019). Moreover, another positive effect of EGS on CPIs 
is clearly supported by my study results (β = 0.095, p = 0.003) as well as other studies, where the 
participation in social commerce was identified as an important factor for building trust and 
communities among consumers, which are salient drivers of purchase behavior (Kim and Park, 2013; 
Hajli, 2015). Finally, the highly positive effect of PVL on CPIs is supported by our regression analysis 
(β = 0.375, p = 0.000). Consumers’ perceptions of value, such as price, quality, and emotional benefits, 
are strongly related to their purchase behavior. 

Conversely, the insignificant association between CSR and CPI (β = 0.003, p = 0.160) conflicts with 
the theorization that CSR activities are generally meaningful to consumers and therefore able to 
promote consumer trust and, consequently, better purchase intentions (Du, Bhattacharya, & Sen, 
2010; Pomering and Dolnicar, 2009). This likely reflects regional or cultural variance in how 
consumers perceive CSR in an online shopping context. The partial mediation of DPR on the CPI, 
meanwhile, has a nonsignificant indirect effect via PERV (β = 0.024, p = 0.325), which contrasts with 
evidence that dynamic pricing has a strong impulse-purchase motivation in e-commerce (Grewal et 
al., 2017). Finally, although HED has a significant effect on the CPI (β = 0.124, p = 0.000), partial 
mediation reveals that other variables, such as utilitarian motivation, might also play important roles, 
which is distinct from studies that emphasize hedonic motivation as a primary driver of online 
shopping environments (Childers et al., 2001; Arnold and Reynolds, 2003). These findings 
demonstrate a level of complexity in consumer online behavior, confirming the significance of 
content quality, social commerce and value perceptions, all of which also highlight the nuanced roles 
of CSR, DPR and hedonic motivation. Further research is needed in different regional and cultural 
contexts. 

7. THEORETICAL IMPLICATIONS 

From a theoretical perspective, the suggested model is enlightening in consolidating the structural 
elements and dimensions that govern and stimulate consumer purchase intentions among online 
shoppers, particularly in the context of Tamil Nadu in South India, which is the frame of reference for 
the selected study. Additionally, by applying the constructs of Content Quality, Social Media 
Influencer Credibility, Engagement in Social Commerce, Dynamic Pricing, Corporate Social 
Responsibility (CSR) and Hedonic Motivation within the framework of the Consumer Purchase 
Intentions (CPI), this study makes a valuable addition to the digital marketing and consumer 
behavioral theory literature. The conclusions reinforce the relevance of established models such as 
the Technology Acceptance Model (TAM) and the Stimulus‒Organism‒Response (SOR) framework, 
which note that content quality and 'perceived value' remain cardinal in online decision-making 
among consumers. 
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 Additionally, the findings of this study provide further insights into how cultural and regional 
conditions can shape the efficacy of CSR and dynamic pricing strategies in online marketplaces and 
the universality of concepts in online consumer behavior, as well as add to the calls for the 
localization of global theories that pertain to online marketing. Since hedonic motivation was the 
partial mediator of the relationship, consumer behavior models should consider both emotional and 
social conditions in the digital era. Overall, the study allows for a more complicated understanding of 
digital consumer behavior and further highlights the importance of adapting global marketing 
theories with region-specific parameters. 

8. PRACTICAL IMPLICATIONS 

The practical implications of the study inform marketers, businesses and policymakers in online 
retail in Tamil Nadu, South India, that the high influence of content quality on consumer purchase 
intentions (CPIs) means that increasing awareness and encouraging customers to make purchases 
becomes easier if a business creates high-quality, engaging, culturally resonant content. The positive 
influence of social media influencer credibility and engagement in social commerce means that 
businesses can collaborate with credible influencers and increase their engagement in social 
commerce communities to build consumer trust and thereby influence purchase decisions. However, 
as CSR has a nonsignificant influence on the CPI, businesses have to revise their CSR strategies to 
make them more aligned with consumer expectations and values that are related to their cultural 
norms. The insights around dynamic pricing and hedonic motivation mean that businesses can 
calibrate their pricing strategies and rationally incorporate utilitarian and hedonic value incentives 
in their marketing offers. In conclusion, firms can optimize their online marketing by leveraging the 
insights from this research. This can potentially help them engage consumers better and enhance 
their competitiveness in the online retail marketplace. 

9. LIMITATIONS AND SUGGESTIONS FOR FUTURE RESEARCH 

Limitations of This Study The limitations of this study provide an important context for interpreting 
the findings and suggest future research opportunities. 

The findings of this study are limited to the geographic context of Tamil Nadu, South India, which has 
its own specific culture, economy and society. Since local economic and social factors, to a certain 
degree, play a significant role in consumer behavior, these findings might be applicable only for this 
particular type of scenario and cannot be generalized to other regions or countries with different 
dynamics of culture, economy and society. Hence, papers need to be written for different geographic 
locations to extend the study and obtain a global impact. The focus is primarily on the set of factors 
that significantly influence the purchase decisions of consumers—the factor called ‘consumer 
purchase intent’—in the context of online shopping. Certain other factors, both direct and indirect, 
that might impact ‘consumer purchase intent’ as a factor that could affect online purchases, such as 
technological advancements, payment security, and customer service, were not factored into the 
analysis. Such factors that have the potential to influence ‘consumer purchase intent’ were not 
included in the current model, which means that this model could be extended in a future paper and 
tested in the best way possible. The online-buying categories used for this study focus primarily on 
four distinct categories of products—consumer electronics, fashion & lifestyle, home essentials and 
lifestyle products. Although the findings seem applicable for the online purchase categories that were 
part of the study, they might not be relevant to other product categories, such as luxury goods (either 
online or offline), groceries, and digital services. Future research in this stream can study buyer intent 
specific to such products to understand whether the same factors affect their purchases to the same 
extent as the four product categories used for the study and, more generally, across other categories 
of products purchased online. With the extension of research to a wider range of product categories, 
the robustness of the study would increase since the results from one set of products can be tested 
on other sets. 
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