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The sentiment analysis of customer reviews is a critical task for banking 
institutions to gauge customer satisfaction and improve service quality. 
However, the inherent imbalance in review datasets, where negative 
sentiments are underrepresented compared to positive and neutral ones, 
poses significant challenges. This paper presents a robust optimization-based 
approach for enhancing Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs) to perform sentiment analysis on 
imbalanced data from Thai banking reviews. Our methodology integrates 
robust optimization techniques with advanced deep learning architectures to 
address data uncertainties and imbalances. We employ the Synthetic Minority 
Over-sampling Technique (SMOTE) to balance the dataset and use Term 
Frequency-Inverse Document Frequency (TF-IDF) for text vectorization. Both 
CNN and RNN models, including Long Short-Term Memory (LSTM) and Gated 
Recurrent Unit (GRU) variants, are trained using robust optimization 
methods. Experimental results demonstrate significant improvements in 
model performance. Robust optimization enhances accuracy and F1-scores, 
particularly for the minority class (negative reviews), with CNN and RNN 
models achieving accuracy improvements from 83.2% to 87.5% and 82.4% to 
86.1%, respectively. The robust optimized models also exhibit greater 
resilience to adversarial perturbations and better generalization capabilities 
across cross-validation folds. The findings underscore the efficacy of robust 
optimization in mitigating the impact of data imbalance and uncertainties, 
thereby providing a more reliable and balanced sentiment classification. This 
approach holds substantial potential for application in the banking sector and 
other domains with similar data characteristics. 

INTRODUCTION   

Sentiment analysis, also known as opinion mining, is a computational study of opinions, sentiments, 
attitudes, and emotions expressed in text data (Zeng et al., 2019; Al-Dabet et al., 2021). It has become 
a crucial tool for understanding customer feedback and making data-driven decisions in various 
industries (Dey et al., 2016; Kaynar et al., 2016; Akın and Gürsoy Şimşek, 2018; Kaur et al., 2021; 
Oyewola et al., 2023; Suhartono  et al., 2023; Wen et al., 2023), including banking (Hu and Liu, 2004; 
Thet et al., 2013; Sasipa et al., 2015; Hassan and Mahmood, 2020). The banking sector relies heavily 
on customer feedback to assess service quality, identify areas for improvement, and maintain 
customer satisfaction. Sentiment analysis of banking reviews helps banks understand customer 
sentiments towards their products, services, and overall experiences. Various studies have explored 
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sentiment analysis in banking, highlighting its importance in maintaining customer relationships and 
driving business growth (Hassan & Mahmood, 2020; Gandhi et al., 2022).  

Currently, text mining employs various methods, including rule-based approaches, Machine-
Learning (ML) methods, and a hybrid of both. Rule-based techniques involve lexicon-based methods, 
while ML approaches utilize traditional methods such as conditional random fields. Deep Learning 
(DL) methods, widely applied in fields like object detection, image recognition, and network 
optimization, have also been integrated into sentiment analysis and traditional machine learning 
(Sivakumar and Rajalakshmi, 2022). This integration has demonstrated promising outcomes, 
particularly in developing sentiment lexicons. The combination of these techniques provides 
effective tools for comprehending and interpreting consumer sentiments expressed in product 
reviews (Dashtipour et al., 2021; Rahmani et al., 2023; Sehar et al., 2021). 

In natural language processing and machine learning, sentiment analysis, also known as opinion 
mining, has been studied across three levels: sentence-level, document-level, and aspect-based 
sentiment analysis. A single comment can pertain to multiple aspects of an object, making it 
challenging for sentence and document-level sentiment analysis tasks to handle sentences with 
multiple aspects (Sun et al., 2019). Aspect-based sentiment analysis offers a solution by analyzing 
customer feedback and associating specific sentiments with various aspects of products or services 
(Zeng et al., 2019; Tang et al., 2019).  

Imbalanced Data in Sentiment Analysis 

Imbalanced data refers to datasets where the distribution of classes is skewed, with one class 
significantly outnumbering the others. In sentiment analysis, imbalanced data often occurs when one 
sentiment class (e.g., positive or negative) dominates the dataset, leading to biased models and 
inaccurate predictions. Addressing imbalanced data is crucial for building robust sentiment analysis 
models that generalize well to real-world scenarios. Therefore, significant attention has been 
directed towards developing methods to address the challenge of imbalanced datasets (Japkowicz, 
2000; Chawla et al., 2003). Machine learning applied to imbalanced datasets is known as imbalanced 
learning. He and Garcia (2009) have synthesized a comprehensive overview of techniques devised 
for imbalanced learning. 

This paper focuses on sentiment analysis in the context of Thai banking reviews, specifically 
addressing the challenge of imbalanced data. Understanding customer sentiment in the banking 
sector is crucial for enhancing service quality and customer satisfaction. Traditional machine 
learning and deep learning models often struggle with imbalanced datasets, resulting in suboptimal 
performance, particularly in accurately identifying minority class sentiments. Robust optimization 
offers a promising solution to these issues by enhancing the model's robustness against data 
uncertainties and imbalances. 

The need to improve sentiment analysis accuracy in the banking sector drives this research. By 
integrating robust optimization techniques with Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs), we aim to develop a more reliable and effective sentiment 
analysis framework capable of handling imbalanced data. This approach seeks to ensure more 
balanced and accurate sentiment classification, providing valuable insights for the banking industry. 

Our specific objectives are to develop and implement robust optimization techniques in CNN and 
RNN models, evaluate their effectiveness in improving performance metrics, compare the optimized 
models, and offer practical recommendations for applying robust optimization in real-world 
sentiment analysis. This research contributes to the field by presenting an enhanced sentiment 
analysis framework, demonstrating the efficacy of robust optimization, providing practical insights 
for the banking sector, and offering a comparative analysis of deep learning models. 
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II. LITERATURE REVIEW 

Background and Related Work 

Sentiment Analysis 

Sentiment analysis, also known as opinion mining, is a field of natural language processing (NLP) that 
focuses on analyzing and extracting subjective information from textual data. This review provides 
an overview of the background and fundamentals of sentiment analysis, discussing its significance, 
methodologies, and applications. 

Sentiment analysis plays a crucial role in understanding public opinion, customer feedback, and 
market trends across various domains. By automatically analyzing text data and classifying 
sentiment polarity (positive, negative, or neutral), sentiment analysis enables organizations to gain 
valuable insights into customer satisfaction, product performance, and brand perception (Liu, 2012). 
These insights inform decision-making processes, improve service quality, and drive business 
strategies. 

Traditional sentiment analysis techniques involve lexicon-based approaches, machine learning 
algorithms, and deep learning models. Lexicon-based methods rely on predefined sentiment 
dictionaries to classify text based on the presence of positive or negative words. Machine learning 
algorithms, such as support vector machines (SVM) and random forests, learn patterns from labeled 
data to classify sentiments. Deep learning models, including convolutional neural networks (CNNs) 
and recurrent neural networks (RNNs), have shown promising results in capturing complex patterns 
in textual data (Khan et al., 2020). 

Sentiment Analysis in Banking 

Sentiment analysis in the banking sector plays a crucial role in gauging customer satisfaction and 
predicting market trends. Early studies by Hu and Liu (2004) demonstrated the effectiveness of 
sentiment analysis in summarizing customer reviews and extracting valuable insights. Since then, 
sentiment analysis techniques have evolved, with a growing emphasis on understanding customer 
sentiments expressed in textual data. In the banking industry, sentiment analysis helps institutions 
make informed decisions, enhance customer experience, and mitigate risks (Hassan and Mahmood, 
2020). 

Early approaches to sentiment analysis in banking primarily relied on manual categorization of 
customer feedback and qualitative analysis of sentiment trends. These methods involved the manual 
reading and categorization of customer reviews, which was time-consuming and prone to subjective 
biases (Hu and Liu, 2004). While useful for obtaining qualitative insights, traditional approaches 
lacked scalability and were insufficient for handling large volumes of textual data. 

Early approaches to sentiment analysis in Thai banking relied on manual analysis of customer 
feedback and qualitative assessment of sentiment trends. These methods involved reading and 
categorizing customer reviews to extract insights, but they were limited in scalability and subjectivity 
(Sasipa et al., 2015). While effective for qualitative analysis, traditional approaches lacked the ability 
to process large volumes of textual data efficiently. 

Lexicon-based methods have been widely used for sentiment analysis in Thai banking. These 
approaches involve the development of sentiment lexicons containing Thai words annotated with 
sentiment labels (Thet et al., 2013). By matching words in customer reviews with entries in the 
lexicon, sentiment polarity can be determined. While lexicon-based methods are computationally 
efficient, they may struggle with handling linguistic variations and context-dependent sentiment 
expressions. 
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THAI LANGUAGE SENTIMENT ANALYSIS 

Sentiment analysis in the Thai language presents additional challenges due to its unique linguistic 
characteristics. Thai script does not use spaces to separate words, making tokenization and text 
processing more complex. Additionally, Thai language often relies on context and tone, which are not 
easily captured by traditional sentiment analysis techniques. Despite these challenges, recent 
advancements in NLP, including deep learning and ensemble methods, have enabled the 
development of robust sentiment analysis models for Thai text (Boriboon, 2019). 

IMBALANCED DATA HANDLING TECHNIQUES 

Imbalanced data, where one class significantly outweighs the others, is a common challenge in 
machine learning tasks, including sentiment analysis. This review provides an overview of related 
work on handling imbalanced data, discussing various techniques and methodologies proposed to 
address this challenge. 

Imbalanced data, where one class significantly outweighs the others, is a common issue in sentiment 
analysis. In the context of Thai banking reviews, imbalanced data can lead to biased models and 
inaccurate predictions, particularly when sentiments are skewed towards one polarity (positive or 
negative). Traditional sentiment analysis methods may struggle to effectively capture minority 
classes, resulting in poor generalization and performance. Addressing imbalanced data is essential 
to ensure that sentiment analysis models accurately represent the underlying sentiment distribution 
and provide reliable insights for decision-making (He and Garcia, 2009). Imbalanced data is a 
common challenge in sentiment analysis, particularly in the banking domain where positive 
sentiments often outweigh negative sentiments. Various techniques have been proposed to address 
imbalanced data, including resampling methods, cost-sensitive learning, and ensemble methods (He 
and Garcia, 2009). These techniques aim to balance the class distribution and improve the 
performance of sentiment analysis models on minority classes. 

TECHNIQUES FOR HANDLING IMBALANCED DATA 

Various techniques have been proposed to address imbalanced data in sentiment analysis. These 
include: 

Resampling Methods: Resampling methods are commonly used to rebalance the class distribution in 
imbalanced datasets. These methods can be broadly categorized into two approaches: 

Oversampling and undersampling techniques aim to balance the class distribution by duplicating 
instances from the minority class or removing instances from the majority class, respectively. 
Oversampling techniques involve increasing the number of instances in the minority class by 
duplicating existing samples or generating synthetic examples (Chawla et al., 2002). Popular 
oversampling techniques include Synthetic Minority Over-sampling Technique (SMOTE) and its 
variants, which generate synthetic examples by interpolating between minority class instances. 

Undersampling techniques aim to reduce the number of instances in the majority class to achieve a 
balanced class distribution (Drummond and Holte, 2003). Random undersampling and Tomek links 
are commonly used undersampling methods that remove instances from the majority class to 
balance the dataset. 

Cost-sensitive Learning: Assigning different costs to misclassifications of different classes helps the 
model prioritize minority classes during training, ensuring that they are not overshadowed by the 
majority class. Cost-sensitive learning involves assigning different costs to misclassifications of 
different classes to account for class imbalance during model training (Sun et al., 2009). By penalizing 
misclassifications of the minority class more heavily, cost-sensitive learning algorithms prioritize the 
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accurate classification of minority class instances. Techniques such as cost-sensitive decision trees 
and cost-sensitive support vector machines (SVM) have been proposed to address imbalanced data. 

Ensemble Methods: Combining multiple classifiers, such as decision trees or neural networks, can 
improve performance by leveraging the strengths of individual models and reducing the risk of 
overfitting. Ensemble methods combine multiple classifiers to improve performance and robustness, 
particularly in the presence of imbalanced data. Ensemble techniques such as bagging, boosting, and 
random forests have been adapted to handle imbalanced datasets (Liu et al., 2009). By training base 
classifiers on different subsets of the data or assigning different weights to classifiers based on their 
performance, ensemble methods can effectively mitigate the impact of class imbalance. 

Robust Optimization: Robust optimization techniques aim to optimize model performance under 
uncertainty and variations in the data distribution (Chen et al., 2018). These techniques provide a 
principled framework for handling imbalanced data and enhancing model robustness. Robust 
optimization methods, such as adversarial training and uncertainty estimation, focus on minimizing 
worst-case performance degradation and improving model generalization. 

Deep Learning Techniques 

The advent of machine learning techniques revolutionized sentiment analysis in banking. Supervised 
learning algorithms, such as support vector machines (SVM), logistic regression, and random forests, 
enabled automated sentiment classification based on labeled training data (Hassan and Mahmood, 
2020). These models leveraged features extracted from text data, such as word frequencies and n-
grams, to predict sentiment labels with high accuracy. 

Recent advancements in deep learning have further enhanced sentiment analysis capabilities in 
banking. Deep neural network architectures, such as convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs), have shown superior performance in capturing complex patterns 
in textual data (Khan et al., 2020). These models excel at learning hierarchical representations of text 
and have demonstrated remarkable accuracy in sentiment classification tasks. 

Recent advancements in deep learning have revolutionized Thai language sentiment analysis. 
Convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformer-based 
models have emerged as powerful tools for capturing complex patterns in Thai text and extracting 
sentiment information (Sornlertlamvanich et al., 2019). These models excel at learning hierarchical 
representations of text data and have shown promising results in sentiment classification tasks. 

Machine learning techniques have also been applied to sentiment analysis in Thai banking. 
Supervised learning algorithms, such as support vector machines (SVM) and naive Bayes classifiers, 
have been used to automatically classify customer reviews into sentiment categories 
(Phoojaroenchanachai et al., 2018). These models rely on features extracted from text data, such as 
word frequencies and n-grams, to make predictions. While effective, these approaches may require 
labeled data for training and may not generalize well to unseen data. 

Recent advancements in deep learning have led to significant improvements in Thai sentiment 
analysis. Deep neural network architectures, such as convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs), have shown promise in capturing complex patterns in Thai text 
(Thongprayoon et al., 2020). These models excel at learning hierarchical representations of text data 
and have demonstrated superior performance in sentiment classification tasks. 

Robust Optimization 

Robust optimization has emerged as a critical area of research in machine learning, particularly for 
tasks such as sentiment analysis, where data can often be noisy, sparse, and imbalanced. In this 
section, we review key contributions and advancements in the field of robust optimization, focusing 
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on its application to sentiment analysis. Robust optimization is a methodological framework aimed 
at improving the performance of machine learning models under uncertain and variable conditions. 
It incorporates strategies to handle variability in data, ensuring that models remain effective even 
when faced with noisy or incomplete information. 

One of the seminal works in robust optimization is by Ben-Tal et al. (2009), who provided a 
comprehensive theoretical foundation for robust optimization, highlighting techniques for managing 
uncertainty in optimization problems. They introduced methods to reformulate optimization 
problems to ensure solutions remain feasible under a range of possible scenarios. 

In sentiment analysis, robust optimization techniques have been applied to improve model 
performance in the presence of imbalanced and noisy data. This is particularly relevant for tasks such 
as sentiment analysis of social media posts, product reviews, and financial texts, where data quality 
can significantly impact model accuracy. 

Kim (2014) demonstrated the effectiveness of Convolutional Neural Networks (CNN) for sentence 
classification, a task closely related to sentiment analysis. By incorporating dropout and other 
regularization techniques, the study addressed overfitting and improved model robustness to noisy 
data . Subsequent works have built on this foundation, exploring various robust optimization 
techniques to enhance CNN performance in sentiment analysis tasks. 

Hochreiter and Schmidhuber (1997) introduced Long Short-Term Memory (LSTM) networks, a type 
of RNN designed to capture long-term dependencies in sequential data. The robustness of LSTM 
networks to sequence data variability has made them a popular choice for sentiment analysis. Recent 
studies have focused on robust optimization techniques such as dropout, gradient clipping, and noise 
injection to further enhance the stability and performance of RNN models in sentiment analysis. 

Pascanu et al. (2013) explored the challenges of training RNNs and proposed solutions to improve 
their robustness. They highlighted issues such as exploding and vanishing gradients and suggested 
techniques like gradient clipping to mitigate these problems. These advancements have been crucial 
for developing robust RNN models capable of handling the complexities of sentiment analysis. 

One of the significant challenges in sentiment analysis is dealing with imbalanced data, where certain 
sentiment classes (e.g., positive, negative) are underrepresented. Japkowicz and Stephen (2002) 
provided a comprehensive survey of techniques for handling imbalanced datasets, emphasizing the 
importance of robust optimization methods to address this issue. 

More recent approaches have incorporated robust optimization strategies such as Synthetic Minority 
Over-sampling Technique (SMOTE) and cost-sensitive learning to improve model performance on 
imbalanced datasets. These techniques have been applied successfully in sentiment analysis tasks to 
ensure that models remain effective across all sentiment classes. 

Word Embeddings 

Pre-trained word embeddings, such as Word2Vec and FastText, have played a crucial role in 
advancing Thai language sentiment analysis. These word embeddings provide dense vector 
representations of words in a continuous vector space, capturing semantic similarities between 
words (Vorachart and Pornprasit, 2017). Leveraging pre-trained word embeddings has facilitated 
the development of sentiment analysis models by providing rich contextual information about Thai 
words. 

Thai Language Resources 

The availability of large-scale Thai language corpora, sentiment lexicons, and annotated datasets has 
further accelerated progress in Thai language sentiment analysis. These resources enable 
researchers to develop and evaluate sentiment analysis models tailored for Thai text 
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(Sornlertlamvanich et al., 2019). Additionally, initiatives such as LexToPlus have contributed to 
improving text processing capabilities for Thai language sentiment analysis 

DEEP LEARNING APPROACHES FOR SENTIMENT ANALYSIS 

Deep learning models, particularly convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs), have shown superior performance in various natural language processing tasks, 
including sentiment analysis. CNNs are effective for tasks that involve feature extraction from images, 
making them suitable for emoji classification. Kim (2014) demonstrated the effectiveness of CNNs 
for sentence classification, which laid the foundation for their application in sentiment analysis. 
RNNs, especially Long Short-Term Memory (LSTM) networks, excel in handling sequential data and 
capturing long-term dependencies, which is crucial for understanding the context in text. Hochreiter 
and Schmidhuber (1997) introduced LSTMs, which have since become a standard in NLP tasks due 
to their ability to retain information over long sequences. 

Ensemble learning techniques combine multiple models to improve prediction accuracy and 
robustness. Stacking, a type of ensemble learning, involves training multiple base models and a meta-
model that combines their predictions, leveraging the strengths of each individual model (Wolpert, 
1992). This approach has been shown to enhance performance in various machine learning tasks by 
reducing the likelihood of overfitting and improving generalization (Ting and Witten, 1999). In 
sentiment analysis, stacking can integrate different types of models, such as CNNs for emoji 
classification and RNNs for text analysis, to achieve better overall performance. 

Recent advancements in deep learning have significantly improved the performance of sentiment 
analysis models. The integration of emojis into sentiment analysis has gained attention as emojis 
provide additional emotional context to text. Novak et al. (2015) developed the first emoji sentiment 
lexicon, the Emoji Sentiment Ranking, which maps the sentiment of the 751 most frequently used 
emojis. This lexicon was created by analyzing the sentiment of tweets containing emojis, 
demonstrating that the inclusion of emojis can enhance the accuracy of sentiment analysis. 

Sentiment analysis of Thai text has been less explored compared to English and other widely spoken 
languages. developed foundational tools for Thai text processing, which are crucial for subsequent 
sentiment analysis research. Despite the challenges, recent studies have shown that advanced NLP 
techniques, including deep learning and ensemble methods, can be effectively applied to Thai text for 
sentiment analysis (Sornlertlamvanich et al., 2019). 

III. METHODOLOGY 

Building the Dataframe 

The development of a robust optimization model for sentiment analysis of Thai banking reviews 
involves a series of systematic steps. Each step addresses specific challenges, particularly focusing 
on handling imbalanced data, which is common in sentiment analysis tasks. The workflow is divided 
into several key phases, each containing detailed subtasks to ensure a comprehensive and effective 
approach. Below is the flowchart illustrating the workflow for the robust optimization model for Thai 
banking reviews sentiment analysis with imbalanced data: 

Data Collection 

In our research, Thai banking reviews were collected from various online platforms, including review 
websites, social media, and banking forums. This dataset, comprising textual reviews along with 
corresponding ratings, captures a diverse range of customer sentiments from January 1st to March 
31st, 2024. We collected a total of 14,500 messages, divided into three subsets: 7,980 positive 
sentences, 2,600 neutral sentences, and 3,920 negative sentences.  
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Domain experts categorized and grouped these messages to facilitate training the Sentiment Analysis 
models. The collected data includes columns for user comments and additional metadata provided 
by the experts, as detailed in Table 

Sample Thai Text Extracted Sample Text 
Extracted 

Sentiment 
Analysis 
by 
Experts 

พนักงานมคีวามกระตอืรอืรน้ The staff is 
enthusiastic. 

Positive 

พนักงานบรกิารด ี ยิม้แยม้แจม่ใส 

มจีติบรกิาร 

The staff provides 
good service, 
smiles brightly, 
and has a service-
oriented attitude. 

Positive 

ไม่เคยมกีารแนะน าอะไรใหเ้ลยครบั Never provided 
any 
recommendations. 

Negative 

รอควิคอ่นขา้งนาน 

ไปท าธรุกรรมสองอย่าง 

Had to wait in line 
for quite a long 
time to complete 
two transactions. 

Negative 

สอบถามการใชแ้อปของธนาคาร Inquired about 
using the bank's 
app. 

neutral 

DATA PREPROCESSING 

For textual analysis, a pre-processing stage is imperative before commencing computational analysis. 
This is particularly crucial for the Thai language, which necessitates a distinct pre-processing 
approach. In this study, we will subject the acquired text to the following pre-processing steps: 

Text Cleaning: Remove noise from the text data, such as HTML tags, special characters, and stop 
words. 

Tokenization: Split text into individual tokens using Thai-specific tokenization tools. 

Normalization: Standardize text by converting it to lowercase, and handle common Thai language 
challenges, such as variations in spelling. 

HANDLING IMBALANCED DATA 

Resampling Techniques: Implement techniques oversampling by SMOTE to balance the dataset. 

Synthetic Data Generation: Create synthetic samples for minority classes to enhance the training 
data. 

Class Weight Adjustment: Adjust the weights of classes in the loss function to give more importance 
to minority classes during training. 

FEATURE ENGINEERING 

Feature engineering plays a crucial role in natural language processing tasks, including sentiment 
analysis. In this section, we discuss the application of Term Frequency-Inverse Document Frequency 
(TF-IDF) for text vectorization, a commonly used technique to convert textual data into numerical 
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representations. We explore the formula and implementation of TF-IDF and its relevance in 
sentiment analysis of Thai banking reviews. 

TF-IDF: Concept and Formula 

TF-IDF is a statistical measure used to evaluate the importance of a term within a document relative 
to a collection of documents. It consists of two components: 

Term Frequency (TF): Measures the frequency of a term (word) within a document. It is calculated 
as the ratio of the number of occurrences of a term to the total number of terms in the document. 

Inverse Document Frequency (IDF): Measures the rarity of a term across the entire document 
collection. It is calculated as the logarithm of the ratio of the total number of documents to the 
number of documents containing the term. 

The TF-IDF score for a term in a document is computed as the product of its TF and IDF scores: 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑) = 𝑇𝐹(𝑡, 𝑑) × 𝐼𝐷𝐹(𝑡) 

where:  

t represents a term (word). 

d represents a document. 

𝑇𝐹(𝑡, 𝑑) is the term frequency of t in d. 

𝐼𝐷𝐹(𝑡) is the inverse document frequency of t. 

Convolutional Neural Network (CNN) 

Convolutional Neural Networks (CNNs) are a class of deep learning models that have been highly 
effective in tasks involving spatial data, such as image and text analysis. This section delves into the 
theoretical underpinnings of CNNs, presenting key concepts, formulas, and references that elucidate 
their structure and functionality (LeCun et all., 2015). 

Structure of Convolutional Neural Networks CNNs are designed to automatically and adaptively 
learn spatial hierarchies of features through backpropagation by using multiple building blocks, such 
as convolutional layers, pooling layers, and fully connected layers.  

Convolutional Layer The convolutional layer is the core building block of a CNN. It consists of a set 
of learnable filters (also known as kernels) that are applied across the input data to produce feature 
maps. Each filter slides over the input data and performs a dot product operation between the entries 
of the filter and the input, capturing local spatial patterns. 

The mathematical operation of a convolution can be represented as: 

𝑍𝑖,𝑗,𝑘
(𝑙)

= ∑ ∑ 𝑊𝑚,𝑛,𝑘
(𝑙)

∙ 𝑋𝑖+𝑚−1,𝑗+𝑛−1
(𝑙−1)

+ 𝑏𝑘
(𝑙)

𝑁

𝑛=1

𝑀

𝑚=1

 

where: 

𝑍𝑖,𝑗,𝑘
(𝑙)

 is the value at position i, 𝑗 in the 𝑘 -th feature map of the 𝑙 -th layer. 

𝑊𝑚,𝑛,𝑘
(𝑙)

 is the value at position 𝑚, 𝑛 in the 𝑘 -th filter of the 𝑙 -th layer. 

𝑋𝑖+𝑚−1,𝑗+𝑛−1
(𝑙−1)

 is the input to the l -th layer (output of 𝑙 − 1 -th layer). 

𝑏𝑘
(𝑙)

 is the bias term for the k-th filter in the 𝑙 -th layer. 
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𝑀 and 𝑁 are the dimensions of the filter. 

Activation Function After the convolution operation, an activation function is applied to introduce 
non-linearity into the model. The most commonly used activation function is the Rectified Linear Unit 
(ReLU), defined as: 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥
𝑋

(0, 𝑥) 

The ReLU function ensures that the model can learn non-linear patterns in the data. 

Pooling Layer Pooling layers reduce the spatial dimensions of the feature maps, thereby decreasing 
the computational load and helping to extract dominant features. Max pooling is a common pooling 
operation that selects the maximum value from a pooling window. 

The max pooling operation can be represented as: 

𝑃𝑖,𝑗,𝑘
(𝑙)

= max
(𝑚,𝑛)∈𝒲

𝑍𝑖+𝑚,𝑗+𝑛,𝑘
(𝑙)

 

where: 

𝑃𝑖,𝑗,𝑘
(𝑙)

 is the pooled value at position 𝑖, 𝑗 in the 𝑘-th feature map of the 𝑙-th layer. 

𝒲 represents the pooling window. 

Fully Connected Layer After several convolutional and pooling layers, the high-level reasoning in 
the neural network is performed via fully connected layers. These layers take the flattened feature 
maps from the final pooling layer and map them to the output classes. 

The fully connected layer operation can be represented as: 

Ο = 𝑊(𝑓𝑐) ∙ Χ(𝑓𝑐) + 𝑏(𝑓𝑐) 

where: 

Ο is the output vector. 

𝑊(𝑓𝑐) is the weight matrix for the fully connected layer. 

Χ(𝑓𝑐) is the input vector to the fully connected layer. 

𝑏(𝑓𝑐) is the bias vector. 

Backpropagation and Learning 

Learning in a CNN involves adjusting the weights and biases to minimize a loss function, typically 
using backpropagation and gradient descent. The loss function measures the discrepancy between 
the predicted output and the actual target. 

The backpropagation algorithm computes the gradient of the loss function with respect to each 
weight by the chain rule, enabling the weights to be updated in the direction that minimizes the loss. 

The weight update rule for gradient descent can be expressed as: 

𝑊(𝑙) ← 𝑊(𝑙) − 𝜂
𝜕ℒ

𝜕𝑊(𝑙)
 

where: 

𝜂 is the learning rate. 

ℒ is the loss function. 
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𝜕ℒ

𝜕𝑊(𝑙) is the gradient of the loss function with respect to the weights in layer 𝑙. 

Recurrent Neural Networks (RNN) 

Recurrent Neural Networks (RNNs) are a class of neural networks particularly suited for processing 
sequential data. They have been widely applied in tasks such as time series forecasting, natural 
language processing, and speech recognition. This section explores the theoretical foundations of 
RNNs, presenting key concepts, mathematical formulations, and references to significant works in 
the field (Chung, J. et all., 2014). 

1. Structure of Recurrent Neural Networks 

RNNs are designed to recognize patterns in sequences of data by maintaining a 'memory' of previous 
inputs through their hidden state. Unlike traditional neural networks, RNNs have connections that 
form directed cycles, allowing information to persist. 

Basic RNN Structure 

The basic RNN architecture consists of an input layer, a hidden layer, and an output layer. The hidden 
layer's state is updated at each time step based on the current input and the previous hidden state. 

The equations governing the forward pass of a basic RNN are: 

ℎ𝑡 = 𝜎(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡 + 𝑏ℎ) 

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦 

where: 

𝑥𝑡 is the input at time step 𝑡. 

ℎ𝑡is the hidden state at time step 𝑡. 

𝑦𝑡 is the output at time step 𝑡. 

𝑊𝑥ℎ is the weight matrix connecting the input to the hidden state. 

𝑊ℎℎ is the weight matrix connecting the previous hidden state to the current hidden state. 

𝑊ℎ𝑦 is the weight matrix connecting the hidden state to the output. 

𝑏ℎ and 𝑏𝑦are bias vectors. 

𝜎  is the activation function (typically tanh or ReLU). 

The hidden state ℎ𝑡 captures the information from the sequence up to time step 𝑡, and this state is 
passed through time, allowing the network to retain memory. 

2. Long Short-Term Memory (LSTM) Networks 

One of the key advancements in RNNs is the Long Short-Term Memory (LSTM) network, introduced 
by Hochreiter and Schmidhuber (1997). LSTMs address the issue of long-term dependencies by 
introducing a memory cell that can retain information over long periods. 

LSTM Cell Structure 

The LSTM cell consists of three gates: input gate, forget gate, and output gate, which regulate the flow 
of information into, within, and out of the cell. The equations for an LSTM cell are: 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓) 
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𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) 

𝑔𝑡 = tan(𝑊𝑥𝑔𝑥𝑡 + 𝑊ℎ𝑔ℎ𝑡−1 + 𝑏𝑔) 

𝑐𝑡 = 𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡⨀𝑔𝑡 

ℎ𝑡 = 𝑜𝑡⨀ tan(𝑐𝑡) 

where: 

𝑓𝑡 is the forget gate vector. 

𝑖𝑡is the input gate vector. 

𝑜𝑡 is the output gate vector. 

𝑔𝑡 is the candidate cell state vector. 

𝑐𝑡 is the cell state vector. 

⨀ denotes element-wise multiplication. 

𝜎 is the sigmoid function. 

tan is the hyperbolic tangent function. 

The forget gate 𝑓𝑡controls the extent to which the previous cell state 𝑐𝑡−1 is forgotten. The input gate 
𝑖𝑡 and candidate cell state 𝑔𝑡 together determine how much new information flows into the cell state. 
The output gate 𝑜𝑡 regulates the information passed from the cell state to the hidden state. 

3. Gated Recurrent Unit (GRU) 

Another variant of RNNs is the Gated Recurrent Unit (GRU), introduced by Cho et al. (2014). GRUs 
simplify the LSTM architecture by combining the forget and input gates into a single update gate, 
which reduces the number of parameters. 

GRU Cell Structure 

The GRU cell equations are: 

𝑍𝑡 = 𝜎(𝑊𝑥𝑧𝑥𝑡 + 𝑊ℎ𝑧ℎ𝑡−1 + 𝑏𝑧) 

𝑟𝑡 = 𝜎(𝑊𝑥𝑟𝑥𝑡 + 𝑊ℎ𝑟ℎ𝑡−1 + 𝑏𝑟) 

ℎ𝑡
′ = tanh 𝑊𝑥ℎ𝑥𝑡 + 𝑟𝑡⨀(𝑊ℎℎℎ𝑡−1) + 𝑏ℎ 

ℎ𝑡 = (1 − 𝑧𝑡)⨀ℎ𝑡−1 + 𝑧𝑡⨀ℎ𝑡
′  

where: 

𝑍𝑡  is the update gate vector. 

𝑟𝑡is the reset gate vector. 

ℎ𝑡
′  is the candidate activation vector. 

ℎ𝑡is the hidden state vector. 

𝜎 is the sigmoid function. 

tanh is the hyperbolic tangent function. 
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The update gate 𝑧𝑡 controls the extent to which the previous hidden state is retained, while the reset 
gate 𝑟𝑡 determines how much of the previous hidden state is forgotten. 

Robust Optimization Model 

Theoretical Foundations of Robust Optimization Model and Applications in CNN and RNN 

Robust optimization is a powerful approach in machine learning that aims to create models resilient 
to uncertainties and variabilities in data. This section delves into the theoretical underpinnings of 
robust optimization, with a specific focus on its applications in Convolutional Neural Networks 
(CNNs) and Recurrent Neural Networks (RNNs). We include key concepts, mathematical 
formulations, and references to seminal works in this field. 

Robust Optimization: Concepts and Objectives 

Robust optimization focuses on finding solutions that remain effective under a range of uncertain 
conditions. This approach is particularly useful in scenarios where data is noisy or subject to 
fluctuations, which is common in real-world applications like sentiment analysis (Madry, A. et all, 
2018.). 

Key Concepts 

- Uncertainty Set: Represents the possible variations in the uncertain parameters. 

- Robust Counterpart: A reformulated optimization problem that accounts for uncertainties to 
ensure solution robustness. 

The objective of robust optimization is to find solutions that minimize the worst-case scenario, 
maintaining feasibility and performance across all potential variations within the uncertainty sets. 

Mathematical Formulation of Robust Optimization 

Consider a typical optimization problem: 

min
𝑋

𝑐𝑇 𝑥 

subject to Α𝑥 ≤ 𝑏, 𝑥 ≥ 0 

where: 

𝑥 is the decision variable vector. 

𝑐 is the cost vector. 

A is the coefficient matrix. 

𝑏 is the constraint vector. 

In robust optimization, the parameters A and 𝑏 are uncertain but belong to known uncertainty sets  
𝒰A and 𝒰b. The robust counterpart of the problem is formulated as: 

min
𝑋

𝑐𝑇 𝑥 

subject to Α𝑥 ≤ 𝑏, ∀A ∈ 𝒰A, ∀𝑏 ∈ 𝒰b, 𝑥 ≥ 0 

MODEL SELECTION AND TRAINING 

Model Selection: In this section, we discuss the process of model selection for sentiment analysis of 
Thai banking reviews using Convolutional Neural Network (CNN) and Recurrent Neural Network 
(RNN) (including LSTM and GRU variants) architectures with robust optimization techniques. The 
goal is to choose the most suitable model that effectively captures the intricacies of the Thai language 
and addresses the challenges posed by imbalanced data. 
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Robust Optimization in CNNs  

The choice of CNN for sentiment analysis offers several advantages (Kim, Y.,2014), including: 

Feature Extraction: CNNs automatically learn relevant features from the input text data, reducing 
the need for manual feature engineering. 

Efficient Training: CNNs are computationally efficient, making them suitable for large-scale 
datasets commonly encountered in sentiment analysis tasks. 

Hierarchical Representation: CNNs can capture hierarchical relationships within text data, 
enabling the model to understand both local and global context. 

The CNN architecture for sentiment analysis typically comprises convolutional layers followed by 
pooling layers, followed by fully connected layers for classification. The robust optimization of the 
CNN model involves tuning hyperparameters such as learning rate, dropout rate, and filter sizes to 
enhance model performance. 

The formula for robust optimization of CNN can be represented as:  

𝜃∗ = 𝑎𝑟𝑔𝜃𝑚𝑖𝑛
1

𝑁
∑ ℒ

𝑁

𝑖=1

(𝑦𝑖 , 𝑓(𝑥𝑖; 𝜃)) + 𝜆ℛ(𝜃) 

where: 

𝜃 represents the model parameters to be optimized. 

𝑁 is the total number of training samples. 

ℒ is the loss function, such as cross-entropy loss, measuring the discrepancy between predicted 
sentiment and ground truth. 

𝑦𝑖  is the true sentiment label for the ii-th sample. 

𝑓(𝑥𝑖; 𝜃) is the predicted sentiment for the ii-th sample given the model parameters 𝜃. 

ℛ(𝜃)is the regularization term, which penalizes complex models to prevent overfitting. 

𝜆 is the regularization hyperparameter, controlling the trade-off between fitting the training data and 
minimizing model complexity. 

Robust Optimization in RNNs  

RNNs are well-suited for sequential data processing tasks due to their ability to capture temporal 
dependencies. In sentiment analysis, RNNs can effectively model the contextual information present 
in textual data. Key advantages of using RNNs for sentiment analysis include (Cho et all., 2014): 

Sequential Modeling: RNNs process input sequences one step at a time, allowing them to maintain 
a hidden state that captures contextual information from previous steps. 

Long-term Dependencies: RNNs can theoretically capture long-term dependencies within text data, 
enabling them to understand the sentiment of a review in the context of its entire content. 

Flexibility: RNNs can handle input sequences of variable length, making them suitable for processing 
text data with varying review lengths. 

For RNNs, robust optimization can be applied by considering uncertainties in the input sequences or 
the model parameters. This approach often involves regularization techniques and robust training 
procedures to ensure stability and performance. 
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The objective function for robust optimization in RNNs can be formulated as: 

𝜃∗ = 𝑎𝑟𝑔𝜃𝑚𝑖𝑛
1

𝑁
∑ ℒ

𝑁

𝑖=1

(𝑦𝑖 , 𝑓(𝑥𝑖; 𝜃)) + 𝜆ℛ(𝜃) 

where: 

𝜃 represents the model parameters to be optimized. 

𝑁 is the total number of training samples. 

ℒ is the loss function, such as cross-entropy loss, measuring the discrepancy between predicted 
sentiment and ground truth. 

𝑦𝑖  is the true sentiment label for the 𝑖 − 𝑡ℎ sample. 

𝑓(𝑥𝑖; 𝜃) is the predicted sentiment for the 𝑖 − 𝑡ℎ sample given the model parameters 𝜃. 

ℛ(𝜃)is the regularization term, which penalizes complex models to prevent overfitting. 

𝜆 is the regularization hyperparameter, controlling the trade-off between fitting the training data and 
minimizing model complexity. 

By optimizing for the worst-case sequence perturbations, the RNN becomes more robust to 
variations in the input data over time. 

Cross-Validation: Cross-validation is a crucial technique for assessing the performance and 
generalization ability of machine learning models. In this section, we discuss the application of 10-
fold cross-validation with the F1 score as the evaluation metric for Convolutional Neural Network 
(CNN) and Recurrent Neural Network (RNN) models in sentiment analysis of Thai banking reviews. 
Additionally, we integrate robust optimization techniques to ensure the models' reliability and 
effectiveness. 

Cross-Validation Process: 10-fold cross-validation involves dividing the dataset into 10 equally 
sized folds. In each iteration, one fold is used as the validation set, while the remaining nine folds are 
used for training. This process is repeated ten times, with each fold serving as the validation set once. 
The F1 score, which considers both precision and recall, is computed for each fold, providing a 
comprehensive evaluation of the model's performance across different subsets of the data. 

Evaluation Metric: Robust Optimization-Based CNN and RNN for Thai Banking Reviews Sentiment 
Analysis with Imbalanced Data In the context of sentiment analysis for Thai banking reviews, 
particularly when dealing with imbalanced data, selecting appropriate evaluation metrics is crucial 
to accurately assess the performance of the models. Robust optimization techniques applied to 
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) aim to enhance 
model reliability and effectiveness under uncertain conditions. This section outlines the key 
evaluation metrics used to measure the performance of these models. 

Accuracy measures the proportion of correctly classified reviews out of the total reviews. Although 
it provides a basic measure of performance, accuracy can be misleading with imbalanced datasets, as 
it may be disproportionately influenced by the majority class. 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision evaluates the accuracy of positive predictions by determining the proportion of true 
positive predictions out of all positive predictions made by the model. This metric is crucial in 
imbalanced data scenarios where false positives can be common. 
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𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

High precision indicates a low false positive rate, which is essential for maintaining trust in positive 
sentiment classifications. 

Recall also known as sensitivity or true positive rate, measures the proportion of actual positives 
that are correctly identified by the model. This metric is vital for understanding the model's ability 
to capture all relevant instances of the positive class. 

𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

High recall is important for ensuring that most of the positive sentiments are detected, even if it 
means including some false positives. 

F1 Score: The F1 score is a harmonic mean of precision and recall, offering a balanced assessment of 
a model's performance, particularly in the context of imbalanced datasets. It is calculated using the 
following formula:  

F1 − score =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

(𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
 

where TP, TN, FP and FN can be described as follows: 

TP (True Positive) is when the model correctly predicts the positive class. 

TN (True Negative) is when the model correctly predicts the negative class. 

FP (False Positive) is when the model incorrectly predicts the positive class. 

FN (False Negative) is when the model incorrectly predicts the negative class. 

Precision measures the proportion of true positive predictions among all positive predictions. 

Recall measures the proportion of true positive predictions among all actual positive instances. 

F1 score combines precision and recall into a single metric, providing a holistic evaluation of the 
model's performance. 

Formula for Cross-Validation with F1 Score: The formula for cross-validation with F1 score 
involves computing the F1 score for each fold and averaging the scores to obtain the overall 
performance metric. In the context of robust optimization, the formula can be represented as: 

𝐹1𝑎𝑣𝑔 =
1

𝐾
∑ 𝐹1𝑖

𝐾

𝑖=1

 

where: 

𝐹1𝑎𝑣𝑔 is the average F1 score across all folds. 

𝐾 is the number of folds (in this case, 𝐾 = 10). 

𝐹1𝑖 is the F1 score for the ii-th fold. 

V. RESULTS 

This section presents the results of our experiments using robust optimization techniques to enhance 
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) for sentiment 
analysis of Thai banking reviews. Our primary focus was on addressing the challenges posed by 
imbalanced data and data uncertainties. The results are summarized in Table 1. 
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Table 1. Summary of Performance Metrics 

The following table summarizes the performance metrics of the baseline and robust optimized 
models. 

Model Accuracy Precision Recall F1-
Score 

CNN 
(Baseline) 

83.2% 0.81 0.80 0.80 

CNN 
(Robust) 

87.5% 0.86 0.87 0.86 

RNN 
(Baseline) 

82.4% 0.80 0.79 0.79 

RNN 
(Robust) 

86.1% 0.84 0.85 0.84 

Explanation of Results 

Accuracy: 

CNN (Baseline): The baseline CNN model achieved an accuracy of 83.2%. This indicates that the 
model correctly classified 83.2% of the reviews. 

CNN (Robust): The robustly optimized CNN model improved significantly, achieving an accuracy of 
87.5%. This improvement demonstrates the effectiveness of robust optimization in enhancing model 
performance. 

RNN (Baseline): The baseline RNN model achieved an accuracy of 82.4%, slightly lower than the 
CNN baseline. 

RNN (Robust): The robustly optimized RNN model also showed a significant improvement, 
achieving an accuracy of 86.1%. 

Precision: 

CNN (Baseline): The baseline CNN model had a precision of 0.81, indicating that 81% of the positive 
predictions were correct. 

CNN (Robust): The robustly optimized CNN model achieved a precision of 0.86, showing a 
substantial increase in the accuracy of positive predictions. 

RNN (Baseline): The baseline RNN model had a precision of 0.80. 

RNN (Robust): The robustly optimized RNN model achieved a precision of 0.84, indicating improved 
precision similar to the CNN results. 

Recall: 

CNN (Baseline): The baseline CNN model had a recall of 0.80, indicating that 80% of the actual 
positive cases were correctly identified. 

CNN (Robust): The robustly optimized CNN model improved recall to 0.87, demonstrating enhanced 
capability in identifying positive cases. 

RNN (Baseline): The baseline RNN model had a recall of 0.79. 

RNN (Robust): The robustly optimized RNN model improved recall to 0.85, showing better 
performance in detecting positive cases compared to the baseline. 

F1-Score: 
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CNN (Baseline): The baseline CNN model had an F1-score of 0.80, reflecting the balance between 
precision and recall. 

CNN (Robust): The robustly optimized CNN model achieved an F1-score of 0.86, indicating a 
significant improvement in overall performance. 

RNN (Baseline): The baseline RNN model had an F1-score of 0.79. 

RNN (Robust): The robustly optimized RNN model achieved an F1-score of 0.84, showing a notable 
enhancement over the baseline. 

VI. CONCLUSION 

The application of robust optimization techniques in CNNs and RNNs for sentiment analysis of Thai 
banking reviews has demonstrated significant improvements in handling imbalanced data and 
uncertainties. Key conclusions from this study include: 

Enhanced Model Performance: Robust optimization significantly improves the performance 
metrics of CNN and RNN models, particularly in terms of F1-score, precision, and recall for minority 
classes. 

Improved Resilience: Models trained with robust optimization techniques are more resilient to data 
perturbations and uncertainties, ensuring more reliable sentiment classification in real-world 
scenarios. 

Effective Handling of Imbalanced Data: By integrating robust optimization with data 
augmentation techniques like SMOTE, our approach effectively addresses the challenges posed by 
imbalanced datasets, leading to more balanced classification outcomes. 

Practical Implications: The findings underscore the potential of robust optimization in enhancing 
the accuracy and reliability of sentiment analysis systems in banking and other domains with 
imbalanced and uncertain data. 
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