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Crafting harmonious color palettes is vital in fields like design, art, and 
marketing. This paper introduces a novel approach by combining Bisecting 
K-Means clustering with a Conditional Generative Adversarial Network 
(CGAN) to generate harmonious color palettes. The Bisecting K-Means 
algorithm clusters an art image dataset, representing the ground truth 
palettes. A CGAN is then trained on these clusters to generate new, 
harmonious color combinations. The research utilizes two clustering 
methods—K-Means and Bisecting K-Means—as feature extractors on the 
WikiArt dataset, which comprises artworks from renowned painters across 
history. The effectiveness of the approach is evaluated using the CIEDE2000 
metric, where lower values indicate better performance. The proposed 
method achieves a score of 23.5836, improving upon the baseline of 
24.8320 by 1.2484. The results show that this method generates color 
palettes that are both diverse and visually appealing while adhering to 
principles of color harmony. This research contributes by providing an 
automated, robust framework for color palette generation, enhancing 
creativity and design processes. 

 

INTRODUCTION 

A color palette is a collection of colors used in art, design, or creative projects. It is not merely 
decorative but significantly influences the observer's perception of a work. The complex interplay of 
colors within a palette creates an overall atmosphere and serves as a key element in the creative 
process. Color harmony refers to aesthetically pleasing arrangements of colors in a composition 
(Burchett, 2001). Despite the development of intuitive skills over time, defining why certain colors 
blend well remains challenging. Creating algorithmic rules to explain this phenomenon is even more 
complex (Moussa & Watanabe, 2022). According to Itten's color theory (Itten, 1974), colors have a 
strong psychological impact on human emotions and perceptions. For example, red is often 
associated with energy and courage, while blue is linked to calmness and stability. Choosing a color 
palette involves considering color psychology to achieve the desired communication or message. 
Color harmony encompasses various combinations such as monochromatic, analogous, 
complementary, and triadic. The right harmony enhances the visual appeal of a design and aids in its 
comprehension. Cultural and social contexts also play a crucial role; for instance, white symbolizes 
purity in some cultures but signifies mourning in others. Understanding these contexts is essential to 
avoid misinterpretations. Modern tools like Adobe Color CC generate color palettes based on user 
preferences and imported images (Pan & Westland, 2018). A harmonious color palette, as shown in 
Figure 1, may contain varying numbers of colors depending on the intended use. 
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Figure 1: Color palettes 

Creating harmonious color palettes has grown more complex over time, surpassing the basic use of 
color wheels. Color wheels suggest harmony without assessing it, often leading to ambiguous and 
laborious combinations (T.Wei, et al., 2019). Figure 2 illustrates the visual discomfort of non-
harmonious palettes versus the aesthetic appeal of harmonious ones. 

 

Figure 2: Harmonious and non-harmonious color palette 

A harmonious color palette can be quantitatively measured through color brightness and 
chromaticity relationships. Colors are often considered aesthetically pleasing when they exhibit 
similar brightness and chromaticity levels, promoting visual balance and unity (Yang, Chen, Xiao, & 
Westland, 2020). Common methods for measuring color palette harmony include CIELab and 
CIEDE2000 (Gomez-Polo, et al., 2016). This paper introduces a novel approach combining Bisecting 
K-Means and Conditional Generative Adversarial Networks (CGAN) to automate the creation of 
harmonious color palettes. This method leverages clustering and machine learning techniques to 
generate visually appealing and contextually appropriate color combinations, aiming to simplify and 
enhance the design process. 

Hue Sort, Brightness Sort, and Binary Palette Sort for sorting colors in extracted palettes from 
paintings using the k-means algorithm was proposed (Phan, Fu, & Chan, 2018). They introduced the 
GPLVM (Gaussian Process Latent Variable Models) for predicting new colors to be added to the 
palettes. Their evaluation showed that Binary Palette Sort outperformed the other methods, with the 
smallest average color distance of 0.65 evaluated with Eucleadian Distance of CIELab, achieved when 
using the combination of GPLVM and BPS. This method relies heavily on the initial palette extraction, 
which may not capture all relevant colors from the paintings. Various modified ArtGAN models were 
compared (Tan, Chan, Aguirre, & Tanaka, 2018). They introduced an Image Quality Strategy where 
the generator produces images at twice the resolution, which are then downsampled before being 
passed to the discriminator. Their evaluations using Inception Score and Objectness Score revealed 
inconsistencies between these metrics, highlighting the importance of visual inspection for 
generative model evaluation. Inception Score (IS) and Objectness Score (OS) revealed 
inconsistencies. IS: 7.9, OS: 0.58. There were significant inconsistencies between the Inception Score 
and Objectness Score, emphasizing the need for visual inspection as a complementary evaluation 
method. Jeong, Yang, & Shin (2019) combined statistical computations, superpixel segmentation, 
DBSCAN, and Hierarchical Agglomerative Clustering to generate color palettes from images. Their 
method focused on identifying pure pixels and grouping similar pixels to reduce variation. However, 
their evaluation was purely observational with no quantitative metrics provided. Sensitivity to 
sensor noise and difficulty handling fine textures were significant challenges, limiting the robustness 
of their method. 

Reyes & Lara-Alvarez (2019) proposed a geometric approach to formulating color palettes. They 
evaluated three chromatic circle patterns (analog, complementary, and triad) and assessed spatial 
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color relationships to identify harmonious colors. Their experiments revealed significant influences 
of hue patterns and linear patterns on color harmony perception, but they acknowledged the 
subjective nature of color perception and the limitations of their geometric approach. Significant 
influences of hue patterns and linear patterns on color harmony perception were observed. The 
approach is subjective due to the nature of color perception, and the geometric method has inherent 
limitations in addressing complex color relationships. Peng & Chou (2019) used NLP to generate 
color palettes from text descriptions, mapping phrases to predefined color palettes. Their work did 
not include quantitative evaluation, focusing instead on visual inspection. They noted the need for 
more comprehensive evaluation and the limitations imposed by fixed mappings of phrases to 
palettes. The method is limited by the fixed mappings of phrases to palettes, which may not capture 
the full nuance of text descriptions. Lertrusdachakul, Ruxpaitoon, & Thiptarajan (2019) generated 
color palettes from images using K-Means clustering, followed by hue and saturation analysis. They 
proposed two methods for selecting representative colors: one based on hue differences and 
clustering, and the other on the brightest colors in Munsell color groups. Their qualitative evaluation 
using a Likert scale showed satisfactory results across different image types (3.67 for photos, 3.68 
for scanned images, and 3.69 for computer graphic images). The method relies on qualitative 
assessment, which can be subjective and may not provide a comprehensive evaluation of the color 
palettes. 

Lu, et al (2020) proposed a method for generating color palettes optimized for data visualization. 
They formulated the task as an optimization problem balancing point distinctness, name difference, 
and color discrimination. Their method used simulated annealing to select optimal colors, ensuring 
clarity and distinction in visual data representations. Their evaluation showed that their method 
produced color palettes that improved visual distinction in data visualizations compared to 
traditional methods. The optimization process can be computationally intensive, and the method's 
effectiveness may vary depending on the specific data visualization context. No quantitative or 
qualitative evaluations were conducted in the research. Westland & Lai (2020) used standard K-
Means clustering to create color palettes from fashion images, focusing on preprocessing by cropping 
image areas before color extraction. The research used 48 Burberry fashion show images and 
gathered color palettes from 22 respondents as ground truth. The evaluation showed that the ΔE 
value, indicating color difference in LAB color space, was 6.6 for the ground truth, 14.9 for the model 
without preprocessing, and 7.7 for the model with preprocessing, making the latter more accurate. 
However, the segmentation method included skin color, potentially reducing accuracy when clothing 
colors overlapped with skin tones. Further exploration is needed to overcome these limitations and 
to investigate segmentation in other color spaces beyond the simple k-means approach. Kim & Kang 
(2021) developed a GAN-based Color Palette Extraction System that uses Chroma Fine-tuning with 
Reinforcement Learning. The method involves three steps: extracting RGBY image features using a 
Super Resolution Convolutional Neural Network (SRCNN), training a GAN with SRCNN as part of its 
Generator, and using Reinforcement Learning to fine-tune the chromatic values of the generated 
color palettes. This approach achieved a high accuracy of 0.9140, evaluated based on the difference 
between predicted and actual RGB values within an error margin of ±15 units per channel. The 
dataset consisted of 100,000 images of paintings and 100,000 movie posters created by the 
researchers. 

Huang (2021) explored efficient palette generation for color image quantization. The method 
involves a unique algorithm derived from the researcher's original idea, dividing the RGB color space 
into 4096 non-overlapping cubes of 16x16x16 each. Initially, to create the color palette, cubes are 
selected based on having a number of points greater than or equal to a certain threshold. The centroid 
of the selected cubes is then calculated, and if not yet chosen, they are included in the color palette as 
initial colors. For subsequent colors, the Euclidean distance between each unselected cube's centroid 
and the already selected color in the palette is calculated. The smallest value from all Euclidean 
distance calculations is then biased based on the initial number of points. The largest biased value 
determines the next color in the palette. This process repeats until the desired palette size is reached. 
This method successfully quantized high-quality images into 256 colors while maintaining low 
computational costs, particularly with a sample rate of 0.125 taking only 0.3 seconds. The dataset 
used was the USC-SIPI Image Database. Liu, Tao, Huang, Wang, & Li (2022) proposed a method for 
generating color palettes from images using BASNet for saliency score prediction and a Super Pixel 
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Fully Convolutional Network for segmentation. They mapped hue values to a saliency-hue circle and 
clustered them to create palette candidates. An algorithm ensured hue diversity and avoided similar 
colors, adding more colors if the desired palette size wasn’t reached. Evaluations included qualitative 
user experiments with a 72.22% preference rate, quantitative reproduction of designer palettes 
scoring 186.60 in the Minimum Color Difference Model, and tests on low-rated AVA dataset images, 
showing good palette quality. The method’s limitations include recommended palette sizes of 4 to 7 
colors; too many (n ≥ 10) results in similar colors, while too few may overlook less visually significant 
areas. Yuan, et al (2022) introduced a VAEAC-based method to recommend color palettes customized 
for infographic layouts. Using the InfoVIF dataset of 13,245 infographic images, they trained the 
VAEAC model on extracted features. The evaluation involved four steps: qualitative case studies, 
controlled user studies, surveys, and interviews. Artist-designed palettes scored highest in color 
harmony (mean = 5.45; 95% CI = [5.31; 5.59]) and readability (mean = 5.72; 95% CI = [5.59; 5.85]). 
Among other methods, InfoColorizer-recommended palettes scored the highest in harmony (mean = 
4.60; 95% CI = [4.44; 4.75]) and readability (mean = 5.20; 95% CI = [5.06; 5.34]). Significant 
differences between methods were found using the Friedman test, with InfoColorizer performing 
better than random and ColorBrewer palettes in both harmony and readability. Moussa & Watanabe 
(2022) introduced two neural network variations for generating color palettes from images: a 
Variational Autoencoder (VAE) and a VAE GAN (Variational Autoencoder Generative Adversarial 
Network). The VAE uses a Convolutional Encoder, an intermediate sampling layer, and a Bidirectional 
LSTM decoder to extract features and generate color palettes. The VAE GAN adds adversarial training 
with a generator and two discriminators to produce high-quality palettes. Using datasets from 
DesignSeeds and ColorPalettes, the models were evaluated by 12 participants, rating accuracy and 
quality with Mean Opinion Score. Human-crafted palettes scored highest (4.514 and 4.008), followed 
by the VAE (3.168 and 3.514) and the VAE GAN (1.82 and 3.34). Limitations include the dependence 
on training data quality and the occasional mismatch with input images, indicating a need for further 
refinement. 

Sharma, Tandukar, & Bista (2023) proposed a method for creating color palettes using combination 
k-means and n-grams, commonly used in natural language processing. This method computes all 
possible permutations to predict the next color in a palette. The principle is similar to Markov chain 
modeling, computing the highest probability to generate the next color in a palette. The method uses 
bi-grams and tri-grams, computed separately and then combined to produce a 5-color palette. The 
evaluation in (Sharma, Tandukar, & Bista, 2023)’s research was conducted with human feedback on 
the color palettes generated by the proposed method, comparing it to human-created palettes. The 
n-grams method achieved a 92.8% likelihood compared to color palettes from Colourlovers.com 
(which the researchers consider human-created palettes). The dataset for this research was scraped 
from Colourlovers.com.  

Sharma, Tandukar, & Bista’s method (2023) demonstrates potential for improvement, as it relies 
solely on K-Means clustering and n-grams for palette generation. By incorporating generative models 
like CGAN, there is an opportunity to achieve more diverse and flexible outputs. This research 
advances their approach by replacing K-Means with Bisecting K-Means to avoid empty clusters and 
achieve more balanced clustering. Additionally, n-grams are replaced with CGAN to better capture 
complex color relationships and generate more varied palettes, conditioned on a given input color. 
This research uses the public WikiArt dataset, which includes 81,444 paintings representing various 
artistic styles. Unlike previous studies that used qualitative evaluations, this research will employ the 
CIEDE2000 metric for quantitative evaluation of color palette generation, as it offers better color 
difference measurement compared to the CIELab metric (Gomez-Polo, et al., 2016). 

METHOD 

Previous research using combinations of K-Means and n-grams (Sharma, Tandukar, & Bista, 2023) to 
generate color palettes has not been sufficiently effective and lacks standardized quantitative 
evaluation. Harmonious color interactions can form patterns that are difficult to learn, necessitating 
a more complex approach than K-Means and n-grams alone. This research aims to find the best 
combination of methods from Clustering (K-Means and Bisecting K-Means as Feature Extractors) and 
CGAN (Conditional Generative Adversarial Network) to produce harmonious color palettes. This 
research will compare the evaluation outputs against a baseline model (Sharma, Tandukar, & Bista, 
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2023) to identify the best method combination for generating harmonious color palettes. Evaluation 
will be conducted using the CIEDE2000 metric to measure the performance of the proposed method 
against the baseline model. 

Dataset 

The dataset used in this research is the WikiArt dataset, which was obtained from previous research 
(Tan, Chan, Aguirre, & Tanaka, 2018). This dataset is a modified version of the original WikiArt 
dataset (WikiArt.org - Visual Art Encyclopedia, 2010), with additional data incorporated. Portion of 
data for each training, validation and test stage can be seen in Table 1. Meanwhile, the overview of 
the sample images in the dataset can be seen in Figure 3. 

Table 1: The division of the dataset for the training, validation and testing processes. 

Dataset Total 
Training (80%) 65.156 

Validation (10%) 8.144 
Test (10%) 8.144 

Total 81.444 

 

 

Figure 3: Sample paintings in the dataset 

To address the constraints of computational resources and time, each image in the dataset was 
downsampled by selecting a random subset of 3,000 pixels prior to initiating the clustering process. 
This approach ensures that the analysis remains feasible without compromising the integrity of the 
overall clustering results. By sampling a consistent number of pixels (n = 3,000) from each image, we 
were able to maintain a manageable dataset size that allowed for efficient processing while still 
capturing sufficient visual information for meaningful clustering. 

Overview of the proposed method 

This research proposes a novel approach to generating harmonious color palettes. It combines two 
unsupervised learning methods, where one algorithm acts as a feature extractor and the other as a 
generator to produce the output. The learning process begins with the feature extraction process 
referred to as Auxillary Task in Figure 9 which is a clustering algorithm generating outputs with 
cluster amount of 5 or 10, k = 5 and k = 10, representing the number of colors in the palette that will 
be generated in this research. These outputs are then used to train the generator in the Conditional 
Generative Adversarial Network (CGAN) model in the Palette Generation Process with CGAN in the 
next stage as shown in Figure 4. The overall workflow visualization of the proposed method can be 
seen in Figure 4. 
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Figure 4: Workflow visualization of the proposed method 

The CGAN model used in this research refers to the model developed by (Mirza & Osinderi, 2014) 
originally trained on the MNIST dataset. However, for the architecture of the Generator and 
Discriminator, the CGAN model architecture from Mindspore Huawei (Huawei Technologies Co., Ltd, 
2022) is utilized. This model was selected based on the evaluation results using the Kernel Density 
estimate with Parzen window (Gramacki, 2017) (Tan, Yin, & Zhao, 2018), where it achieved a score 
of 283.03 ± 2.15. In comparison, the original model from (Mirza & Osinderi, 2014), only reached a 
score of 132 ± 1.8, with higher values indicating better performance, the result can be seen on Table 
2. Evaluation will be done quantitatively to measure the harmony of generated color palettes and 
comparing the result with the baseline model with the CIEDE2000 metric.  

Table 2: Evaluation Index for various CGAN 

Model Kernel Density estimate with Parzen 
window for the MNIST dataset 

GAN (original) 225 ± 2 

CGAN (original) 132 ± 1.8 

CGAN (MindSpore) 283.03 ± 2.15 

Feature extraction using clustering methods 

Bisecting K-Means is chosen as the Feature Extractor for its ability to achieve global optimum, unlike 
K-Means, which can result in suboptimal local optima due to initial cluster center sensitivity (Chen, 
et al., 2020) as shown in Figure 8. The extraction process converts 81,444 paintings into palettes with 
k = 5 and k = 10 in RGB color space. For comparison, K-Means is also implemented as a Feature 
Extractor. 

 

Figure 5: 3D Visualization of clustering result in RGB color space 
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Figure 6: Sample output of the clustering or feature extraction 

Figures 6 shows a sample of the clustering result using Bisecting K-Means, which serves as input for 
the Generative Adversarial Network model. Each pixel in an image is represented numerically in the 
RGB color space. Figure 5 illustrates the RGB 3D visualization of pixels, cluster centers, and the final 
cluster values used as input for the second model (CGAN). The extraction process iterates over 
81,444 images, creating a new JSON dataset representing harmonious color combinations. After 
constructing a new dataset using the Feature Extractor, labels are assigned by calculating the average 
RGB values of each extracted palette as shown visually in Figure 7. 

 

Figure 7: Calculated Label from the extracted ground truth palette. 

�̅� =
∑ 𝑅𝑖
𝑛
𝑖=1

𝑛
……………………………….. (1) 

�̅� =
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𝑛
𝑖=1

𝑛
……………………………….. (2) 

�̅� =
∑ 𝐵𝑖
𝑛
𝑖=1

𝑛
……………………………….. (3) 

Where �̅�,�̅�,�̅� is the average of red, green and blue amount from the n colors extracted from the image, 
n can be 5 or 10. 

 

Figure 8: Visual Proof of K-Means experiences local optimum 
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The K-Means method is one of the most used algorithms in cluster analysis for grouping data into 
distinct clusters based on feature or attribute similarity. K-Means is an iterative algorithm that aims 
to partition data into K distinct clusters. Each cluster is represented by a central point called a 
centroid. The algorithm seeks to minimize the sum of squared distances between each data point and 
the centroid of its cluster (Mahmud, Mamun, Hossain, & Uddin, 2018). 

Bisecting K-Means is a variant of the K-Means algorithm that adopts a hierarchical approach to 
clustering data. Bisecting K-Means employs a top-down strategy to recursively split the data into 
smaller groups. The algorithm starts with a single large cluster that encompasses the entire dataset. 
It begins by dividing this large cluster into two smaller clusters and then repeats this process on one 
of the resulting clusters until the desired number of clusters is achieved (Abirani & Mayilvahanan, 
2016). 

Color palette generation using conditional generative adversarial network 

A Conditional Generative Adversarial Network (CGAN) is a type of GAN model that allows for better 
control over the generated data by incorporating additional information into the generator. CGAN is 
an evolution of the standard GAN (Goodfellow, et al., 2014) model, enabling the creation of more 
directed synthetic data by including additional information, known as conditions, into the generator. 
These conditional inputs can be class labels, attributes, or other features that influence the formation 
of the generated data. With this conditional information, CGAN can produce data that is more varied 
and relevant to specific application needs  (Mirza & Osinderi, 2014). 

 

Figure 9: CGAN architecture 

Figure 9 illustrates the general architecture of a Conditional Generative Adversarial Network (CGAN). 
The key difference from the standard GAN architecture lies in the input received by the Generator 
(G) and Discriminator (D) models. The input to the Generator, consisting of the latent space Z, is 
combined with additional information that conditions the synthetic data output. This additional 
information, denoted as c, is also provided to the Discriminator to ensure it correctly differentiates 
between conditioned synthetic data and real data. After calculating the loss values for both models, 
the weights of the Generator and Discriminator are updated. The model reaches convergence when 
the Generator achieves minimum loss, and the Discriminator achieves maximum loss. 

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝑉 (𝐷, 𝐺)……………… (4) 

𝑉(𝐷, 𝐺) = 𝐸𝑥∼𝑝dt(𝑥)
[𝑙𝑜𝑔𝐷 (𝑥, 𝑐)] + 𝐸𝑧∼𝑝𝑧(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧, 𝑐)))]…… (5) 

Where 𝐸𝑥∼𝑝dt(𝑥)
[𝑙𝑜𝑔𝐷 (𝑥, 𝑐)] represents the expectation of the logarithm of the probability that the 

discriminator correctly predicts the real data x given the condition c. This means that the 
discriminator is expected to assign a high probability (close to 1) to real data that matches the given 

condition. 𝐸𝑧∼𝑝𝑧(𝑧) [𝑙𝑜𝑔 (1 −𝐷(𝐺(𝑧, 𝑐)))]  represents the expectation of the logarithm of the 
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probability that the discriminator predicts the synthetic data generated by the generator G with 
condition c as fake. This means that the discriminator is expected to assign a low probability (close 
to 0) to synthetic data that does not match the given condition. 

Table 3: Generator architecture for 5 Colors 

Layer Input Shape Output 
Shape 

Input 100 100 
Dense 100 256 
LeakyReLU 256 256 
BatchNormalization 256 256 
Dense 256 512 
LeakyReLU 512 512 
BatchNormalization 512 512 
Dense 512 1024 
LeakyReLU 1024 1024 
BatchNormalization 1024 1024 
Dense 1024 15 
Reshape 15 (5,3) 

Table 4: Generator architecture for 10 colors 

Layer Input Shape Output 
Shape 

Input 100 100 
Dense 100 256 
LeakyReLU 256 256 
BatchNormalization 256 256 
Dense 256 512 
LeakyReLU 512 512 
BatchNormalization 512 512 
Dense 512 1024 
LeakyReLU 1024 1024 
BatchNormalization 1024 1024 
Dense 1024 30 
Reshape 30 (10,3) 

Table 5: Discriminator architecture for 5 colors 

Layer Input Shape Output 
Shape 

Input (5,3) (5,3) 
Flatten (5,3) 15 
Dense 15 512 
LeakyReLU 512 512 
Dense 512 512 
LeakyReLU 512 512 
Dropout 512 512 
Dense 512 512 
LeakyReLU 512 512 
Dropout 512 15 
Dense 512 1 

Table 6: Discriminator architecture for 10 colors 

Layer Input Shape Output 
Shape 

Input (10,3) (10,3) 
Flatten (10,3) 30 
Dense 30 512 
LeakyReLU 512 512 
Dense 512 512 
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LeakyReLU 512 512 
Dropout 512 512 
Dense 512 512 
LeakyReLU 512 512 
Dropout 512 15 
Dense 512 1 

In Table 3, Table 4, Table 5 and Table 6 are the architecture for the Generator and Discriminator 
models for 5 colors and 10 colors palette, the modification is on the input layer and output layer to 
match the use case of this research which are 5 colors with 3 channels and 10 colors with 3 channels 
of RGB. 

Evaluation process 

The hyperparameter tuning will be implemented on 2 sets of hyperparameters. This research will 
utilize two sets of hyperparameters derived from the studies by Mirza and Osinderi (Mirza & 
Osinderi, 2014), and the MindSpore model implemented by Huawei (Huawei Technologies Co., Ltd, 
2022). 

The hyperparameters from Mirza and Osinderi (Mirza & Osinderi, 2014) are as follows: 

 Optimizer: SGD (Stochastic Gradient Descent) 

 Learning Rate: 0.1 

 Momentum: 0.5 

 Decay Factor: 1.00004 

The hyperparameters for the MindSpore model by Huawei (Huawei Technologies Co., Ltd, 2022) are 
as follows: 

 Optimizer: Adam 

 Learning Rate: 0.0002 

 Momentum: 0.5 

The best model from the hyperparameter tuning process on the validation set will be selected to 
represent the best model and will be used to compare against the baseline model on test set. Finally, 
the best combination and lowest of CIEDE2000 score will be proposed as Color Palette Generator 
model, since the lower the score indicates better harmonious pattern in the palette. 

The proposed method will be evaluated through three phases: training, validation, and testing. 
Dataset will be divided into three parts, as detailed in Table 1. These data subsets will be utilized in 
two experimental stages: the Clustering stage and the Color Palette Generation stage. In the 
clustering stage, the training, validation, and testing datasets will undergo clustering using two 
methods: K-Means and Bisecting K-Means. Four new datasets will be generated as follows: 

 K-Means; k = 5 

 K-Means; k = 10 

 Bisecting K-Means; k = 5 

 Bisecting K-Means; k = 10 

Clustering will be applied to the training, validation, and testing data for each method and k-value, 
resulting in four new JSON-formatted datasets, each containing 81,444 clustered samples. The 
clustering quality will be evaluated using the Silhouette Score (Shahapure & Nicholas, 2020) for each 
dataset, with the average Silhouette Score calculated to represent the clustering quality. Additionally, 
the average Silhouette Score across k-values (k = 5 and k = 10) will be computed. Silhouette Score 
will be computed using the formula below for each clustering result: 

𝑠(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

𝑚𝑎𝑥{𝑎(𝑖),𝑏(𝑖)}
……………… (6) 
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           𝑆 =
1

𝑁
∑ 𝑠(𝑖)𝑁
𝑖=1 …………………. (7) 

The results of this stage will include the four JSON datasets segmented by training, validation, and 
testing, which will be used in the subsequent Conditional Generative Adversarial Network (CGAN) 
model training phase. Furthermore, the clustering quality will also be assessed using the average 
CIEDE2000 score to evaluate palette quality. These evaluations will be analyzed and used to compare 
it against the palette generated by the CGAN model with same label or condition. 

In the Palette Generation Stage, Several CGAN models will be trained and validated with the 
hyperparameters mentioned above. The performance measurement for the hyperparameter tuning 
process will use the CIEDE2000 metric. 

Table 7: Details of the CGAN model to be trained. 

K (Colors) Feature Extractor Hyperparameters 

5 K-Means Optimizer = SGD 
Learning Rate = 0.1, 
Momentum = 0.5, 
Decay Factor = 1.00004 

5 K-Means Optimizer = Adam 
Learning Rate = 0.0002 
Momentum = 0.5 

5 Bisecting K-Means Optimizer = SGD 
Learning Rate = 0.1, 
Momentum = 0.5, 
Decay Factor = 1.00004 

5 Bisecting K-Means Optimizer = Adam 
Learning Rate = 0.0002 
Momentum = 0.5 

10 K-Means Optimizer = SGD 
Learning Rate = 0.1, 
Momentum = 0.5, 
Decay Factor = 1.00004 

10 K-Means Optimizer = Adam 
Learning Rate = 0.0002 
Momentum = 0.5 

10 Bisecting K-Means Optimizer = SGD 
Learning Rate = 0.1, 
Momentum = 0.5, 
Decay Factor = 1.00004 

10 Bisecting K-Means Optimizer = Adam 
Learning Rate = 0.0002 
Momentum = 0.5 

Table 7 outlines the eight CGAN models to be trained, each with different hyperparameters, feature 
extractors, and color quantities for palette generation. The models are categorized based on the 
number of colors (K) and the clustering method (K-Means or Bisecting K-Means). Each model will 
use one of two optimizers (SGD or Adam) and various hyperparameter settings. Each model will be 
trained using clustered data from the respective feature extractors, aiming to generate palettes with 
the specified number of colors. 

Performance metric using CIEDE2000 

CIEDE2000 is a color difference metric developed by the International Commission on Illumination 
(CIE) and published in 2000. Its primary goal is to provide a more accurate measure of color 
differences based on human perception. Unlike simpler color distance metrics, such as the Euclidean 
distance in the CIELab color space, CIEDE2000 considers various factors that influence how humans 
perceive color differences (Gomez-Polo, et al., 2016). CIEDE2000 was first formulated in the research 
by Luo, Cui, & Rigg (2001). 



Efendi et al.                                                                                      Combining Bisecting K-Means and Conditional Generative Adversarial 

 

19877 

CIEDE2000 uses a more complex calculation than CIELab, considering differences in Lightness (L*), 
Chroma (C*), and Hue (H*) between two colors, and modeling the non-linear effects of human color 
perception. This design allows CIEDE2000 to more accurately estimate color differences in line with 
human perception, making it more consistent with how humans see color differences compared to 
simple metrics like Euclidean distance. CIEDE2000 also accounts for metamerism, where two colors 
with different spectral properties appear the same under different lighting conditions, making it 
more adaptive to various lighting conditions. Although CIELab is still widely used in many 
applications, CIEDE2000 has become more popular in industries like printing, product design, and 
color quality testing due to its higher accuracy and consistency in measuring color differences 
(Gomez-Polo, et al., 2016). 

 

Figure 10: Illustration of the differences (L*), (a*), (b*), the color space used in CIELab Metric 
and (L*), (C*), (H*) color space which is used in CIEDE2000 

Figure 10 illustrates the Lab and LCH color spaces, which are perceptually uniform models widely 
used in color science. The Lab color space defines colors in three dimensions: L for lightness, a for 
the green-red axis, and b for the blue-yellow axis, making it device-independent and suitable for 
accurate color comparison. The LCH space, derived from Lab, represents colors cylindrically, with L 
for lightness, C for chroma (saturation), and H for hue, providing a more intuitive approach for 
manipulating colors based on their perceptual attributes. This distinction is crucial when calculating 
color differences, as metrics like CIEDE2000—an advanced color-difference formula—operate in the 
LCH space to quantify perceptual differences between colors more accurately.  

FINDINGS AND DISCUSSION 

The research to produce harmonious color palettes follows the methods outlined in the early section. 
This process involves training, validation, and testing phases using a combination of K-Means, 
Bisecting K-Means, and CGAN models. Additionally, the results will be compared with a baseline 
model, which is a combination of K-Means and n-grams. The best CIEDE2000 score is achieved by the 
combination of Bisecting K-Means with CGAN with Adam Optimizer in 5 colors palette which is 
23.5836, followed by the combination of K-Means and CGAN with Adam Optimizer with score of 
23.7852, and the baseline model with score of 24.8320. For the 10 colors palette also by the same 
combination of Bisecting K-Means and CGAN with Adam Optimizer with 30.5865 CIEDE2000 score. 

Findings 

Figure 11 shows visual form of the clustering result from image in dataset, along with the evaluated 
Silhouette Score and CIEDE2000 Score, can be seen that higher Silhouette Score does not imply better 
visual inspection, as CIEDE2000 metric value represents the human visual judgement quantitatively. 

The training and validation results quantitatively demonstrate that the proposed method performs 
slightly better than the previous methods. It is also observed that a higher number of clusters, which 
translate to more colors in the palette, positively influences the palette's harmony as measured by 
the CIEDE2000 metric. The result of validation can be seen in Table 10, on the other hand, Table 11 
shows the chosen models with best result during the validation process with hyperparameters and 
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evaluated with the CIEDE2000 metric. Table 12 shows the performance of the models in the test set. 
As seen in Table 12, the proposed method in this research performs slightly better than the baseline 
method, which combines K-Means and n-grams, both in validation and test set. 

Table 8: Silhouette evaluation on clustering result 

 K-Means 
5 

K-Means 
10 

Bisecting K-
Means 5 

Bisecting K-Means 
10 

Average Train 0.4945 0.4155 0.4734 0.3925 
Average 
Validation 

0.4965 0.4171 0.4758 0.3944 

Average Test 0.4942 0.4146 0.4726 0.3919 

 

 

 

Figure 11: Visual example of feature extraction result with clustering 

Table 9: CIEDE2000 evaluation on clustering results 

 K-Means 
5 

K-Means 
10 

Bisecting K-Means 
5 

Bisecting K-Means 
10 

Average Train 29.6178 27.6319 28.6210 26.9720 
Average 
Validation 

29.6833 27.6752 28.6590 27.0172 

Average Test 29.7126 27.7055 28.6790 27.0725 
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Table 8 shows that the Silhouette Score for K-Means is closer to 1 compared to Bisecting K-Means, 
indicating better clustering quality. However, when evaluated within the domain context using the 
CIEDE2000 metric as shown in Table 9, Bisecting K-Means outperforms K-Means. In CIEDE2000, a 
score closer to 0 indicates better color harmony within a palette. This contrast suggests that while 
traditional clustering metrics like the Silhouette Score may favor K-Means, domain-specific metrics 
such as CIEDE2000 provide a more nuanced evaluation of clustering effectiveness, particularly in 
tasks focused on color harmony. Hence, Bisecting K-Means, though seemingly less optimal in general 
clustering metrics, is more effective for color palette generation within the context of perceptual 
color differences. 

Table 10: Result on validation and Hyperparameter tuning 

Methods Optimizer n-
clusters 

Average 
Quality 
(CIEDE2000) 

Bisecting K-Means + CGAN Adam 5 23.6215 
Bisecting K-Means + CGAN SGD 5 33.8083 
Bisecting K-Means + CGAN Adam 10 30.5865 
Bisecting K-Means + CGAN SGD 10 31.7504 
K-Means + CGAN Adam 5 23.7610 
K-Means + CGAN SGD 5 25.5777 
K-Means + CGAN Adam 10 34.0472 
K-Means + CGAN SGD 10 33.3893 

Figure 12 and Figure 13 visualize the training progress of 8 combinations of models shown in Table 
7 in this research. It can be observed that higher Discriminator loss led to better generator in 
generating color palettes. This observation highlights the critical role of the Discriminator in guiding 
the Generator toward producing more refined and harmonious color palettes, emphasizing that the 
adversarial interplay between the two models is key to the overall success of the generative process. 

 

 

Figure 12: Training progress visualization on bisecting K-means + CGAN 
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Figure 13: Training progress visualization on K-Means + CGAN 

Table 11: Summary of the best models from validation and hyperparameter tuning 

Methods n-
clusters 

Optimizer Average Quality 
(CIEDE2000) 

Bisecting K-Means + CGAN 5 Adam 23.6592 
Bisecting K-Means + CGAN 10 Adam 30.5865 
K-Means + CGAN 5 Adam 23.7610 
K-Means + CGAN 10 SGD 33.3893 
K-Means + n-grams (Sharma, 
Tandukar, & Bista, 2023) 

5 - 25.0198 

Table 12: Summary of testing results from the best model from validation stage 

Methods n-
clusters 

Optimizer Average Quality 
(CIEDE2000) 

Bisecting K-Means + 
CGAN 

5 Adam 23.5836 

Bisecting K-Means + 
CGAN 

10 Adam 30.5628 

K-Means + CGAN 5 Adam 23.7852 

K-Means + CGAN 10 SGD 33.3768 
K-Means + n-grams 
(Sharma, Tandukar, & 
Bista, 2023) 

5 - 24.8320 

DISCUSSION 

 

Figure 14: Sample of generated color Palette of 5 colors with low CIEDE2000 score 

 

Figure 15: Sample of generated color palette of 5 colors with high CIEDE2000 score 
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Figure 16: Sample of generated color palette of 10 colors with low CIEDE2000 score 

 

Figure 17: Sample of generated color palette of 10 colors with high CIEDE2000 score 

The figures presented showcase the effectiveness of the proposed model in generating harmonious 
color palettes. The performance of the model is evaluated using the CIEDE2000 score, a metric known 
for its precision in measuring color differences by considering human visual perception factors such 
as Lightness (L), Chromaticity (C), and Hue (H). 

Figure 14 displays a generated color palette of 5 colors with a low CIEDE2000 score of 9.6023. This 
low score indicates a high degree of color harmony within the palette. The colors are predominantly 
green, suggesting a natural and cohesive blend, which can be ideal for themes inspired by nature, 
such as forests or gardens. The palette is generated based on the input label or in the context of CGAN 
is called the condition. As we can see visually the label is brown-like color which may represent 
woods, the model generates a palette that matches the condition which might be interpreted 
contextually with nature theme. 

Figure 15 shows a palette with a high CIEDE2000 score of 37.7835. The higher score signifies greater 
color variation within the palette. Despite this, the palette includes a range of colors from blue to 
pink, demonstrating the model's capability to produce diverse color combinations. This can be 
particularly useful for artistic or design purposes where a broad spectrum of colors is desired. 

Figure 16 and Figure 17 present palettes with 10 colors, both having relatively high CIEDE2000 
scores of 16.8802 and 35.7841, respectively. These palettes exhibit more complex color schemes, 
with a mixture of hues and tones. The model’s ability to generate such palettes shows its flexibility 
and understanding of color theory. For example, the inclusion of green and blue hues in a single 
palette mimics natural elements like water and foliage, enhancing the visual appeal and thematic 
relevance. 

 

Figure 18: 5 colors palettes generated from the same conditional color 

Figure 18 illustrates the ability of the model to generate various 5-color palettes from the same 
conditional color, which is the last color in each palette. The numbers above each palette represent 
the CIEDE2000 scores, reflecting the degree of color harmony within each palette. The figure 
demonstrates that the model can produce a diverse array of color palettes, all anchored by the same 
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conditional color. This highlights the model’s capability to maintain thematic coherence while 
introducing variations in the accompanying colors. Despite the same conditional color, each palette 
exhibits unique combinations, suggesting the model's proficiency in exploring the color space 
effectively. The CIEDE2000 scores range from approximately 18.33 to 26.99. Lower scores indicate 
better harmony, meaning the colors in the palette are perceived to be more similar and visually 
cohesive. Palettes with lower CIEDE2000 scores, such as those around 18.33, show more tightly 
grouped color schemes, which are likely to be perceived as more harmonious by human observers. 
The generated palettes display a wide range of hues, from greens and yellows to reds and purples, 
showing the model’s versatility. For instance, one can observe how the model generates palettes with 
predominantly green tones (e.g., the palette with a score of 25.50) as well as more varied palettes 
incorporating contrasting colors like purple and green (e.g., the palette with a score of 24.22). The 
conditional color, often a prominent hue within the palette, acts as an anchor, ensuring that the 
generated palettes are contextually relevant and suitable for the intended theme. This relevance is 
critical for applications in design where the conditional color represents a brand color, theme, or 
specific context. The model’s ability to generate harmonious palettes is evident from the CIEDE2000 
scores and visual inspection. Palettes with lower scores appear more harmonious, while those with 
higher scores exhibit more diversity, suitable for different design needs. In practical scenarios, the 
ability to generate varied yet harmonious palettes from a single conditional color is invaluable. For 
instance, in branding, maintaining a consistent primary color while varying secondary colors can 
keep designs fresh yet consistent with the brand’s identity. The analysis of Figure 18 shows that the 
proposed model is adept at generating diverse color palettes from the same conditional color while 
maintaining harmony, as indicated by the CIEDE2000 scores. This capability is crucial for design and 
artistic applications where consistency and variety are both desired. The use of CIEDE2000 as a 
metric ensures that the generated palettes are evaluated in a manner that aligns with human visual 
perception, making the results both scientifically robust and practically relevant. 

 

Figure 19: 10 colors palettes generated from the same conditional color 

Figure 19 showcases the model's ability to generate various 10-color palettes from the same 
conditional color, which is the last color in each palette. The model demonstrates its capability to 
produce a diverse set of 10-color palettes, all anchored by the same conditional color. This 
emphasizes the model’s strength in maintaining thematic consistency while introducing different 
variations in the complementary colors. Each palette, although sharing the same conditional color, 
displays unique combinations, highlighting the model's effectiveness in exploring the extensive color 
space. The model generates palettes that include both analogous colors (e.g., various shades of green 
and blue) and contrasting colors (e.g., greens paired with reds or purples), which can cater to 
different design needs. The ability to generate varied yet harmonious 10-color palettes from a single 
conditional color is invaluable for practical applications in design and art. For instance, in UI/UX 
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design, maintaining a consistent primary color while varying secondary colors can enhance the user 
experience without losing the brand’s identity. The analysis of Figure 19 demonstrates that the 
proposed model excels in generating diverse 10-color palettes from the same conditional color while 
maintaining overall harmony, as reflected by the CIEDE2000 scores. This capability is essential for 
design and artistic applications where both consistency and variety are required. 

The analysis of these figures underlines the model's proficiency in creating harmonious and 
contextually appropriate color palettes. The use of CIEDE2000 as an evaluation metric is crucial, as 
it aligns with human visual assessment by factoring in Lightness, Chromaticity, and Hue. This 
similarity to human perception ensures that the generated palettes are not only technically sound 
but also aesthetically pleasing. 

The proposed method demonstrates an improvement over the baseline model combining K-Means 
and n-grams, as evidenced by the quantitative results. A higher number of clusters, corresponding to 
more colors in a palette, positively impacts the perceived harmony, as measured by CIEDE2000. This 
indicates that the proposed model can effectively balance color diversity and harmony, making it 
suitable for practical applications in design and art. 

CONCLUSION 

This research involves two main stages: Feature Extraction and Palette Generation. In the Feature 
Extraction process, clustering methods were used to extract color palettes as ground truth based on 
the RGB color space. During the Feature Labeling stage, the conditional color is calculated by 
averaging the colors within the palette to be used as a condition for training the CGAN model. In the 
palette generation stage, this research utilizes a generative model in the form of CGAN. There is 
potential for further development by replacing CGAN with other GAN models that are better suited 
to the research use case. However, this depends on the feature extraction methods employed in this 
research. 

This research successfully combines K-Means with CGAN, meeting the first objective and 
outperforming the baseline model of K-Means and n-grams. Quantitative evaluation using the 
CIEDE2000 metric showed a score of 23.7852 for the K-Means and CGAN combination, compared to 
24.8320 for the K-Means and n-grams model, reflecting an improvement of 1.0468 in the 5-color 
palette. The baseline method (Sharma, Tandukar, & Bista, 2023) did not generate a 10-color palette. 
The Bisecting K-Means and CGAN combination surpassed the K-Means and CGAN model, with a 
CIEDE2000 score of 23.5836 compared to 23.7852 in the 5-color palette, indicating a 0.2016 
improvement. In the 10-color palette, Bisecting K-Means with CGAN achieved a score of 30.5628, 
compared to 33.3768 for K-Means with CGAN, marking an improvement of 2.814. This advancement 
fulfills the second objective, with Bisecting K-Means and CGAN also outperforming the baseline 
model by 1.2484 in the 5-color palette. 
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