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Ceramic packaging design integrates both the aesthetic value and the 
practicality of packaging designs into the production of the most enduring 
and artistic packaging materials. This field has adapted to the computer 
age with a harness for sustainability and efficiency while maintaining 
aesthetic qualities. The study explores the integration of machine learning 
(ML) approaches to advance ceramic packaging solutions. The objective is 
to improve an advanced ceramic packaging design (ACPD)-model 
employing artificial intelligence (AI) technology. Data for the study were 
obtained through images and design specifications of ceramic containers, 
along with user feedback on color and shape preferences. The study 
applies 3D Convolutional Neural Networks (3D-CNN) for shape 
reconstruction, Adaptable Support Vector Machines (ASVM) for color 
extraction, and K-Means clustering (KMC) for multivariate statistical 
analysis. 3D-CNNs enable the precise reconstruction of complex ceramic 
container shapes, optimizing design for both form and function. ASVM is 
used to classify and extract color features, reflecting emerging consumer 
trends and preferences in ceramic packaging. Additionally, KMC is used to 
analyze and group design data based on shape and color characteristics, 
uncovering hidden patterns and relationships that drive design decisions. 
The combination of AI computations and traditional craftsmanship 
improves product packaging through better structural design, optimized 
resource usage and reduced environmental impact.  

INTRODUCTION   

Visual communication has become an important feature of design in traditional society, mainly in 
those areas where designs impact customers’ choices [1]. A modern strategy is to visual 
communication regarding package design in ceramic products may improve the looks of the product 
and deliver a comprehensible indication of the item’s identity, worth, and function. Ceramic 
packaging is a versatile and environmentally friendly option in the packaging industry and it has 
become a narrative, branding and user experience through the fusion of tradition and innovation [2]. 
Visual communication encompasses the use of composition, color, typography and images as media 
in passing a message. Ceramic packaging improves cultural narratives, elicits feelings, and enhances 
brand link while offering the utility of the packaging. Even though simple forms accompanied by 
simple shapes provide elegance to novices, complex patterns based on geometry with historical 
influences create tradition [3]. 

Ceramics packaging has been made functional and creative by designers as the essence of real adding 
value, working, and aesthetic elements into its packaging, by improving the material of ceramics [4]. 

http://www.pjlss.edu.pk/
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Digital printing and glazing, along with laser engraving, have been used to enable complicated 
designing, which was not earlier possible. These innovations allow for added value and bringing the 
packaged item back into a collector’s piece, or reusable product, making the package more valuable 
[5]. The use of ceramic in packaging replaces material like plastic which takes a long time to 
decompose. Its durability and suitability for reuse conform to sustainable methods, hence the 
prospect to capture the attention of conscious customers. It is also suggested the use of visual 
communication comprised of natural colors and green designs or textual messages providing 
information on its sustainability [6]. Ceramic packaging associates the product with its source by 
drawing inspiration from the art and tradition of a region. This factor is particularly important in the 
global market, since exclusive traditional patterns can make products distinct [7]. 

Creative packaging is gradually gaining acceptance with the new generation of customers. To 
improve the physical appeal, rough surfaces are used to the packaging, or a design is stamped on the 
ceramic packaging [8]. Functionality in combination with creativity, like the ability to install storage 
containers or lids which can be used as cups to enhance the user experience [9]. Ceramic packaging 
could meet the needs of different consumers due to the integration of modern components in 
combination with traditional craft. Ceramic art and design can be combined with advanced methods 
of communicating the art to modern-day customers, such as adding a quick response (QR) code, 
which contains the history of the product, or an augmented reality (AR) interface [10]. 

An advanced ceramic packaging design (ACPD) model was created with the use of AI technologies for 
maintaining the appearance and quality of ceramic materials.  

Contributions 

 The study proposes an AI-driven ACPD model that consists of 3D-CNN, ASVM, and K-Means 
to design creative and sustainable ceramic packages with superior effectiveness and aesthetics. 

 The 3D-CNN procedure is employed for precise reconstruction of complex patterns of 
ceramic containers, thereby enhancing the efficiency of the designs and ensuring the strength and 
aesthetic appeal. 

 ASVM is used for classifying and extracting color features from ceramic patterns enabling to 
develop packaging designs on current trends and customer preferences. 

 KMC can be used to reveal hidden connections between color and shape, which can be useful 
for designers when making choices between them. 

The study is organized into the following sections: Section 2 - Related Works, Section 3 - 
Methodology, Section 4 – Result and Discussion, and Section 5 - Conclusion. 

RELATED WORKS 

Using a computer vision algorithm with DL approaches, research [11] suggested an expanded 
method for detecting flaws in ceramic components in a manufacturing environment. Through 
cooperation between the organization and the research group, an intelligent and efficient method for 
identifying flaws in ceramic pieces was developed, attaining a significant F1 score and accuracy. A 
screw extrusion 3D printer was used in the investigation [12], to examine the connection between 
process variables and the strength of deposited lines. Findings from experiments demonstrated the 
approach's efficacy and applicability. An XGBoost-based forecasting algorithm was created in 
research [13] to methodically forecast how the compositions, frameworks, and preparation methods 
of three ceramic substrate materials would affect their flexibility and thermal conductivity. The 
suggested approach enhanced the development of ceramic materials by reducing the amount of time 
and expense associated with trial and error in designing and processing. To forecast the flexural 
durability, Young’s modulus, and fracture resistance of UHTCs provided a variety of mixed designs, 
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processing factors, and testing circumstances, research [14] utilized ML approaches. The findings 
indicated that well-trained ML algorithms could produce a priori forecasts of the three mechanical 
characteristics. 

The use of nonlinear CVs and ML characteristics enables research [15] to achieve 𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜 reliability 
MD crystallization predictions of complicated ceramics. The outcome enhanced the study and 
development of intricate crystalline materials by exhibiting outstanding 𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜 standards and 
effectiveness in creating crystallization and producing free energy fields of all the ceramics An ECA 
process component and an enhanced anchor frame design were used in [16] that proposed a 
YOLOv5s method to address the issue of tiny target flaw recognition in ceramic plates. The improved 
YOLOv5s approach exhibited notable gains in F1 scores, mAP, and precision scores. The potential use 
of ceramic waste in the production of ceramic tiles was examined in the investigation [17]. The 
findings showed that it was possible to effectively repurpose up to 10% of the waste generated 
during the ceramic tile production process. An integrated PIML strategy was presented in the 
research [18] to accurately forecast the creep rupture life of oxide/oxide CMCs by combining 
microstructure properties and previous physical data. The findings showed that the expected 
outcomes were always in the ±3 error range. Essential mechanical characteristics, meso-structural 
factors, test circumstances, and rupture life were interconnected as an outcome of the methodology. 

Using ML approaches to forecast the stoichiometries and characteristics of structures inside a 
specific layout area, research [19] presented a high-throughput, material-agnostic approach to 
finding novel compositionally complex ceramics (𝐶3) for extreme regions. The development of novel 
architectures and stoichiometries with desirable features was accelerated by the use of 
ML algorithms, which screen structures with ideal features and lower the computing costs related to 
property computations. Create ML algorithms for identifying HECCs in the research [20]. Their ML 
approaches exhibited excellent forecasting accuracy based on the characteristics of HECCs and their 
predecessors. An ML approach called SVR was used in the research [21] to estimate the TC of SRBSN 
ceramics based on the process circumstances. When over 100 data points were utilized as the 
training data, the DC (𝑅2) in the evaluated outcomes of the trained SVR model achieved an acceptable 
rate. 

ML techniques were used in the research [22] to analyze experimental information for ceramics of 
the 𝐴2𝑀3𝑂12 family that exhibited NTE. For the linear coefficient of thermal expansion, the resulting 
models showed forecasting capacity with a DC 𝑅2 = 0.81 and a prediction error RMSE = 1.170. An 
enhanced style transfer method was suggested in research [23] for ceramic product decoration to 
deal with the uncertainty of intended design impacts and the absence of systematic direction in 
ceramic painting structure development. The results were extremely important for advancing the 
growth and history of ceramic painting, decorating art and advancing the creative and cultural 
sectors. 

To automatically create an efficient CNN for the detection and classification of ceranidefect items, 
research [24] suggested a 2DG-CNN. The other popular strategies were contrasted with the 2DG-
CNN. The outcomes demonstrated the effectiveness of the suggested strategy. A DL-based method 
for detecting defects in ceramic tiles was suggested in research [25]. The detection rate of the 
proposed approach was significant. As an outcome, it could identify both unknown and known tile 
properties simultaneously. A lightweight HFENet was suggested in the research [26] for efficient tile 
surface defect identification. The findings demonstrated that HFENet operated better than 
lightweight networks and traditional semantic segmentation networks. ResNeXt50 was employed as 
the basic network in the research [27] in conjunction with the SSD method to obtain multi-scale 
characteristics of ceramic craft items that had received various surface treatments. Considering 
recall, precision, and mAP, the research results showed that ResNeXt50-SSD was the most successful 
for feature identification of ceramic craft items. 
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Problem statement 

Processed ceramics have their drawbacks as packaging materials due to a failure to provide modern 
requirements for sustainability, cost-effectiveness, and differentiation for consumer usage, with 
fading aesthetics and designs. Designing geometrically intricate shapes is a problem with the form 
and function, and existing approaches do not react to market fluctuations. Further, incorporating the 
color preferences that were customers-oriented into the ceramic packaging design usually proves to 
be unproductive because it becomes difficult to use colors that can retain their beauty on the 
packaging while at the same time retaining the hardness needed for the packaging to carry out its 
function. 

METHODOLOGY 

The ceramic package design data was gathered. The 3D-CNN approach was utilized for the shape 
reconstruction, and the color extraction process was done using the ASVM. The KMC approach is used 
for multivariate statistical analysis. An ACPD-model is developed using the AI-technology. The overall 
flow of ACPD-model is shown in Figure 1. 

 

Figure 1: Overview of ACPD-model 

http://function.to/
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Data collection 

The ceramic package design data was obtained from the three major sources to ensure a ceramic 
package design. Visual information that included various shapes, textures, and patterns was obtained 
by acquiring 500 high-resolution images of the ceramic containers. There were 150 different 
container designs on which the requirements for dimensions, material kinds, and surface treatment 
were incorporated. The questionnaires allowed the collection of 200 persons’ preferences in terms 
of colors and shapes. This dataset introduces elements of practice with creative components that can 
create and enhance packaging, creating an artistic combination between consumers and designers. 

3D-CNN for shape reconstruction 

The application of 3D-CNNs for shape reconstruction is a prominent strategy for ceramic package 
design. The problem of prototyping and customization is resolved by the high ability of 3D-CNNs to 
represent complex shapes and patterns through processing 3D geometric data. These networks can 
be used to process structural and spatial information and may be able to optimize both functional 
and aesthetic aspects. Their use enhances accuracy, reduces the possibility of several manufacturing 
errors, and enables strategists with creative ways of packaging their ceramics that adapt to the 
numerous customer needs. 

3D Convolutional Layer (CL) 

When a 3D CL has IS 𝑚 × 𝑚 × 𝑚 and 𝑐 FMs of size 𝑒 × 𝑒 × 𝑒, it can be written as 𝐷(𝑚, 𝑐, 𝑒). The result 
of 3D CL 𝑘 at point (𝑤, 𝑧, 𝑦) on the 𝑛𝑡ℎ FM can be expressed in Equation (1), 

𝑣𝑘𝑛
𝑤𝑧𝑦

= 𝑎𝑘𝑛 + ∑ ∑ ∑ ∑ 𝑥𝑘𝑛𝑟
𝑗𝑖𝑙𝑒−1

𝑙=0
𝑒−1
𝑖=0

𝑒−1
𝑗=0𝑟 𝑢(𝑘−1)𝑟

(𝑤+𝑗)(𝑧+𝑖)(𝑢+𝑙)
                                                              (1) 

Where 𝑟 travels the FMs in the (𝑘 − 1)𝑡ℎ layer, 𝑎𝑘𝑛 is the FM's bias, and 𝑥𝑘𝑛𝑟
𝑗𝑖𝑙

 is the weight of the 

kernel of the 𝑟𝑡ℎ FM at location (𝑗, 𝑖, 𝑙). The training procedure will produce the bias and the weights. 

3D Pooling Layer (PL) 

The representation of a 3D PL is 𝑂(𝑚, ℎ), which denotes a PL with an IS of 𝑚 × 𝑚 × 𝑚 and a pooling 
kernel of ℎ × ℎ × ℎ. This method takes advantage of max pooling. On the 𝑛𝑡ℎ FM of 3D max PL 𝑘, the 
output at location (𝑤, 𝑧, 𝑦) can be described in Equation (2), 

𝑣𝑘𝑛
𝑤𝑧𝑦

=
𝑚𝑎𝑥

𝑗, 𝑖, 𝑙 ∈ {0,1, … , ℎ − 1}𝑢(𝑘−1)𝑛
(ℎ𝑤+𝑗)(𝑔𝑧+𝑖)(ℎ𝑦+𝑙)

                                                                       (2) 

Following each pooling layer, the hyperbolic tangent (𝑡𝑎𝑛ℎ(. )) activation process is employed to 
enhance nonlinearity. 

Network Design 

The 2D network's architecture consists of one fully connected layer, two pooling layers, and two CLs. 
Use the 3D convolutional and 3D pooling layers in place of the 2D convolutional and pooling layers. 
The framework could be expressed as 𝐷(𝑚𝑑1, 𝑐𝑑1, 𝑒𝑑1) − 𝑂(𝑚𝑜1, ℎ𝑜1) − 𝐷(𝑚𝑑2, 𝑐𝑑2, 𝑒𝑑2) −
𝐸𝐷(𝑚𝑒1) − 𝐾𝑄(𝑚𝑒2); 𝐸𝐷(𝑚).  

Where,  

𝐾𝑄(𝑚) - Logistic regression layer with IS 𝑚, 

𝐸𝐷(𝑚) - Fully-connected layer with IS 𝑚. 

A final result from softmax that indicates the labeling outcome is an integer 𝑘 ∈ {0,1,2, . . , 𝐾}. The 
architecture of 3D-CNN is displayed in Figure 2. 
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Figure 2: Architecture of 3D-CNN 

ASVM for color extraction 

The ASVM offers an effective solution for identifying the appropriate colors that should be used in 
the design of the ceramic package. To accurately recognize and segment complex color patterns, the 
ASVM alters its parameters. This versatility ensures high performance under different light 
conditions and ceramic surfaces. ASVM helps to improve the determination of color patterns and 
enhance the design process. This enables designers to create aesthetically correct packaging, have 
uniform color-density packaging, and retain accuracy in color reproduction. 

The SVM approach operates on the following concept. The categorization issue with 𝑚 sample-label 
pairings is given by 𝑇 = (𝑤𝑗, 𝑧𝑗), (𝑗 = 1,2, … , 𝑚), where 𝑧𝑗 ∈ {−1, +1} is a class label and 𝑤𝑗 ∈ 𝑄 is a 

training set. The expression 𝜔𝑆𝑤 + 𝑎 = 0 is used to create a hyperplane to optimize the space 
between the hyperplane and the support vectors (nearest data points),  

Where, 

𝑎 - Bias factor, and 

𝜔 - Vector of hyperplane coefficients.  

Utilize the classifier training to identify a hyperplane that can distinguish between the negative (−1) 
and positive (+ 1) data as shown in Equation (3). 

𝑚𝑖𝑛𝜔,𝑎
1

2
‖𝜔‖2                   

𝑠. 𝑡.   𝑧𝑗(〈𝜔, 𝑤𝑗〉 + 𝑎) ≥ 1
                                                                                                              (3) 

An optimization issue must be addressed to determine the ideal separation hyperplane, 𝜔𝑆𝑤 + 𝑎 =
0. 

Finding a hyperplane that can accurately and fully separate data points in some applications is 
challenging. A complicated categorization hyperplane like this might cause the model to overfit, 
limiting the forecasting model's generalizability. 

A soft margin is employed to overcome the challenge, and the optimization issue is then modified as 
follows in Equation (3), 

𝑚𝑖𝑛𝜔,𝑎,𝑡    
1

2
‖𝜔‖2 + 𝐷 ∑ 𝜀𝑗

𝑚
𝑗=1                            

𝑠. 𝑡.   𝑧𝑗(〈𝜔, 𝑤𝑗〉 + 𝑎) ≥ 1 − 𝜀𝑗 , 𝑗 = 1,2, … , 𝑚
                                                                              (4) 

Where,  

𝐷 - Penalty coefficient, 

𝜀𝑗 - Slack variable. 

However, it is frequently observed that information in real-life operations is non-linearly distinct. 
The original information should be projected into a high-dimensional area using a nonlinear mapping 
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Φ𝑤 to address the nonlinearity issue. Linear separability of information may exist in the high-
dimensional area. 

The Lagrange technique may be used to solve Equations (3 & 4) in dual form. The dual form in a 
nonlinear instance is expressed in Equation (5),  

𝑚𝑖𝑛
𝛼

  ∑ 𝛼𝑗 −
1

2
∑ ∑ 𝛼𝑗𝛼𝑖𝑧𝑗𝑧𝑖〈Φ(𝑤𝑗)Φ(𝑤𝑖)〉𝐸𝑖𝑗𝑗

𝑠. 𝑡.       0 ≤ 𝛼𝑗 ≤ 𝐷, ∑ 𝛼𝑗𝑧𝑗 = 0                         𝑖   
                                                                            (5) 

Where the Lagrange multiplier is represented by 𝛼𝑗. The final decision-making function is shown in 

Equation (6), 

𝐶𝑙𝑎𝑠𝑠(𝑤) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑗𝑧𝑗〈Φ(𝑤𝑗)Φ(𝑤)〉𝐸 + 𝑎𝑖 )                                                                          (6) 

The kernel function, which can be written as the inner product 𝑙(𝑤, 𝑧) = 〈Φ(𝑤)Φ(𝑧)〉𝐸, is essential 
to the overall SVM creation process. The kernel determines whether new information and the 
support vectors are comparable or different. Since the distance between the inputs is a linear 
conjunction, the dot product is the similarity metric utilized for linear SVM or a linear kernel. A 
polynomial kernel or a radial basis function kernel is two more kernels that may be utilized for 
converting the input space into greater dimensions. Pseudo code 1 shows the procedure for color 
extraction. 

Pseudo code: ASVM for color extraction 

from sklearn. svm import SVC 

from sklearn. preprocessing import StandardScaler 

from sklearn. model_selection import train_test_split 

from sklearn. metrics import accuracy_score 

import numpy as np 

import cv2 

def extract_color_features(image_path): 

image =  cv2. imread(image_path) 

image_rgb =  cv2. cvtColor(image, cv2. COLOR_BGR2RGB) 

mean_color =  np. mean(image_rgb, axis = (0, 1)) 

return mean_color 

def train_asvm_model(features, labels): 

scaler =  StandardScaler() 

features_scaled =  scaler. fit_transform(features) 

X_train, X_test, y_train, y_test =  train_test_split(features_scaled, labels, test_size
= 0.2, random_state = None) 

asvm =  SVC(kernel = ′rbf′, C = 1.0, gamma = ′scale′) 

asvm. fit(X_train, y_train) 

y_pred =  asvm. predict(X_test) 

accuracy =  accuracy_score(y_test, y_pred) 
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print(f′Model Accuracy: {accuracy ∗  100: .2f}%′) 

return asvm, scaler 

def predict_color_suitability(model, scaler, color_features): 

color_features_scaled =  scaler. transform([color_features]) 

prediction =  model. predict(color_features_scaled) 

return prediction 

if __name__  ==  "__main__": 

image_paths =  [] 

labels =  [] 

color_features =  [extract_color_features(image) for image in image_paths] 

asvm_model, feature_scaler =  train_asvm_model(color_features, labels) 

new_image_path =  "" 

new_color_features =  extract_color_features(new_image_path) 

suitability =  predict_color_suitability(asvm_model, feature_scaler, new_color_features) 

print(f"The predicted color suitability for the new image is: {suitability}") 

KMC for multivariate statistical analysis 

KMC is one of the most common multivariate statistical evaluation methods used in the context of 
ceramic package design to identify patterns and clusters differing from sets of data. It helps designers 
to better understand customers’ preferences and make the right choice of design by classifying any 
design factors, such as color, texture, shape, and material, into groups based on their similarities. This 
method is useful in optimizing efficiency in the classification of package design and accurately 
estimating market trends, hence reducing the costs of production while delivering a unique, 
improved and successful package design strategy that meets the clients' needs. 

A collection of multivariate data's 𝑚 individuals are divided into 𝐾 clusters using the KMC technique, 
where each individual is fully assigned to a single cluster. KMC is repeated as a hard division 
approach. The first step is to segment the data. The means of each group are determined, and the 
data is divided once further by assigning every data to the closest means cluster location. This 
procedure has three steps in its basic form: 

Separate the products into the initial 𝐾 cluster. 

Start by grouping the items into clusters based on the nearest centroid (mean). To obtain a new 
product and for the cluster that missed an object, reevaluate the cluster centroid. The average value, 
which is established in Equation (7), is used to determine the centroid of the group.  

𝐷𝑙𝑖 =
𝑤𝑗𝑙𝑖+𝑤2𝑙𝑖+⋯+𝑤𝑏𝑙𝑖

𝑏
, 𝑖 = 1,2, . . , 𝑜                                                                                 (7) 

Where 𝐷𝑙𝑖 represents group-𝑘's centroid, variable-𝑖, and 𝑏 for the group's member count. 

Step (ii) is repeated until the object cannot be transferred. 

The distance that is most frequently used is the Euclidean distance. The geometric distance in several 
spatial dimensions is its most basic form. The raw data, not the standard data, is often used to 
determine the Euclidean distance. The distance between any two items is unaffected by the addition 
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of extra objects to be examined, which might be an outlier, which is one of the approach's many 
benefits. The size difference alone can cause the distance to grow significantly. The calculation of 
Euclidean distance is Equation (8). 

𝑐(𝑤, 𝑧) = √(𝑤1 − 𝑧1)2 + (𝑤2 − 𝑧2)2 + ⋯ + (𝑤𝑜 − 𝑧𝑜)2                                                   (8) 

Clustering is the process of dividing a given data collection into distinct subsets, or clusters, to 
maximize particular clustering conditions. The CE criteria, which evaluates the squared distance 
between every point and the appropriate cluster center and then adds these distances for every point 
in the information, is the most commonly employed condition. This criterion, which is dependent on 
the cluster centers, is known as CE. Equation (9) defines the CE. 

𝐹(𝑛1, 𝑛2, . . , 𝑛𝑙) = ∑ ∑ 𝐽(𝑤𝑗 ∈ 𝐷𝑙)𝐿
𝑙=1

𝑀
𝑗=1 ‖𝑤𝑗 − 𝑛𝑙‖

2
                                                                   (9) 

The mean of cluster 𝐷𝑙 is represented by 𝑛𝑙, and 𝐽(𝑊) equals 1 if proposition 𝑊 is true and 0 else. 

Several indices are employed to determine the ideal number of groups for the clustering procedure. 
To find the ideal number of clusters in a collection of data, the Krzanowski and Lai (KL) index 
measurement is employed. An index that optimizes 𝐾𝐿 is called optimal 𝐾. The 𝐾𝐿 index calculations 
are represented by Equations (10 & 11). 

𝐾𝐿(𝐾) = |
𝐷𝐼𝐹𝐹(𝐾)

𝐷𝐼𝐹𝐹(𝐾+1)
|                                                                                                    (10) 

𝐷𝐼𝐹𝐹(𝐾) = [(𝐾 − 1)2/𝑐𝑊𝐾𝑙−1] − [𝐾2/𝑐𝑊𝐾𝑙]                                                          (11) 

𝑊𝐾𝑘 is the shared within-cluster sum of squares of the 𝐾 divisions, 𝑊𝐾𝑘−1 is the pooling within-
cluster sum of squares of the 𝐾 − 1 divisions, and 𝑐 is the number of sizes of the information. 

RESULT 

The suggested approach is implemented in Python 3.11 on a Windows 11 laptop with an Intel i7 core 
CPU and 8GB RAM. The suggested method is evaluated with conventional approaches such as Rhino-
based Bi-directional Long Shot Term Memory (BiLSTM) [28] and Rhino-based Support Vector 
Machine (SVM) [28]. 

Accuracy and loss 

The validity of an ACPD model is the ratio of the number of correct predictions that have been stated 
by the model to the total number of forecasts that have been made by the same model. It shows the 
capability of the model to accurately describe the attributes or responses of ceramic materials based 
on computed and actual values. The discrepancy between the actual target values and the output that 
the ACPD model predicts is measured using a metric called loss. It functions as an indicator of error; 
a larger loss denotes a larger departure from the actual values. The model training is to reduce loss 
gradually to increase the model's accuracy and performance. The output of accuracy and loss is 
displayed in Figure 3. 

 

Figure 3: Output of a) accuracy and b) loss 
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Smarter Ceramic Packaging Design 

The smarter ceramic packaging designs important performance metrics are shown in Figure 4. The 
color classification earned 89.5% in terms of reflecting market trends, and its 94.7% accuracy 
ensured accurate agreement with consumer preferences is displayed in Figure 4 (a). In terms of 
sustainability, 85% recyclability score indicates a dedication to ecologically friendly techniques, 
while the 96% material utilization rate shows the effective use of resources is displayed in Figure 4 
(b). By optimizing production time by 20% and improving structural durability by 50%, the design 
streamlines the manufacturing process is displayed in Figure 4 (c). These numbers demonstrate how 
AI-driven optimization affects design and manufacturing, striking a balance between sustainability, 
usability, and aesthetics.  

 

Figure 4: Result of Smarter Ceramic Packaging Design 

Accuracy  

Accuracy is the extent to which the predictions, simulations, or outcomes of the ACPD model are close 
to the actual measurements or standards. To ensure the realistic representation of the packing 
system under operating conditions, it is necessary to ensure the accuracy of the variables regulating 
the mechanical characteristics, electrical conductivity, temperature regulation, ceramic components, 
and reliability of the packing system. To maximize design efficiency and dependability for 
sophisticated applications, accuracy necessitates combining accurate material data, and 
sophisticated computational methods. In comparison with the traditional Rhino-based BiLSTM and 
Rhino-based SVM approaches, the suggested ACPD-model has an accuracy value of 95.41%, whereas 
the traditional Rhino-based BiLSTM and Rhino-based SVM approaches have accuracy values of 
93.71% and 87.52%, as displayed in Figure 5. 

 

Figure 5: Result of accuracy 
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RMSE 

The performance of such forecasting tools, including the development of an ACPD-model, is generally 
assessed by evaluating the RMSE statistic. RMSE is calculated from the SR of the average of the 
squared difference in the actual and the anticipated values. As RMSE values decrease, they provide a 
quantity of how well the model performs by reducing the prediction error of the model. In the context 
of ACPD, RMSE could be used for the determination of the accuracy of the model with which it is 
possible to predict variables, such as mechanical strength, thermal conductivity, or failure rates of 
the ceramic material in different conditions, ensuring that the design complies with performance 
criteria. When compared to the suggested ACPD-model, the conventional Rhino-based BiLSTM and 
Rhino-based SVM approaches have high RMSE values of 0.241 and 0.274, whereas the suggested 
ACPD-model has an RMSE value of 0.223, respectively. The result of RMSE values is displayed in 
Figure 6. 

 

Figure 6: Output of RMSE 

MAE 

The ACPD-model is also formulated based on the Mean Absolute Error (MAE), which is one of the 
most important statistics used to evaluate a prediction model's performance. The model's prediction 
errors are simply determined by using the formula of mean absolute deviation of the discrepancies 
between the PV and AV. Through the establishment of the size of prediction errors, MAE supports 
the assessment of how well a model identifies significant aspects such as electrical resistance, 
mechanical strength, or thermal conductivity from the perspective of ACPD. The model with the 
lower MAE is considered a more accurate one and it is important to note that it is necessary to achieve 
the highest dependability and performance of advanced ceramic packing materials for technologies 
with a high density of electronics or other advanced technologies. The traditional Rhino-based 
BiLSTM and Rhino-based SVM techniques have high MAE values of 0.10 and 0.126 when compared 
to the suggested ACPD-model, whereas the suggested ACPD-model has an MAE value of 0.06, as 
displayed in Figure 7. Table 1 shows the overall result comparison. 

 

Figure 7: Result of MAE 
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Table 1: Result comparison 
Methods RMSE MAE Accuracy% 

Rhino based BiLSTM 
[28] 

0.241 0.10 93.71% 

Rhino based SVM[28] 0.274 0.126 87.52% 
ACPD-Model [Proposed] 0.223 0.06 95.41% 

DISCUSSION 

Rhino-based BiLSTM can handle sequential data with the help of forward and backward information; 
it could be challenging for this model to capture the truly non-linear complex features of the advanced 
ceramic packaging design that involves material properties, thermal and mechanical behaviors. 
Furthermore, the demonstrated model could need a large amount of computation and large-scale 
training data to learn non redundant variability across different design conditions, resulting in 
overfitting or suboptimal approximation of the best design solutions. Rhino-based SVM is not good 
at handling high-dimensional problems, a problem frequently encountered in most engineering 
designs, where over-fitting or under-fitting is likely to occur if the feature space is large and data 
sparse. In addition, Rhino-based SVM was found not to be directly suitable for handling noisy or 
unstructured data that can be included in material and manufacturing process characteristics and 
can hinder its implementation in real-world construction. SVM is sensitive to its hyper parameters 
and the regularization parameter, which takes plenty of computation time and resources to optimize. 
To overcome these challenges, the research presents APCD-model using AI technology to maintain 
the quality and aesthetic features of ceramic materials. 

CONCLUSION 

Ceramic packaging design creates the most durable and creative packaging materials by combining 
the aesthetic appeal and functionality of packaging ideas. The ceramic packaging design data was 
collected. Advanced ceramic package design results from the integration of AI technologies, such as 
3D-CNNs, ASVM, and KMC, combining traditional artistry with current computing efficiency. 
Advanced ceramic package design improved from the integration of AI technologies, such as 3D-
CNNs, ASVM, and KMC, combining traditional artistry with modern computing efficiency. The ACPD-
model explains how AI can maintain the quality of the aesthetic and physical features of ceramic 
materials while improving design functionality, efficiency, and sustainability. The performance of the 
ACPD-model is evaluated in terms of accuracy (95.41%), RMSE (0.223), and MAE (0.06). The possible 
challenge of precisely capturing subjective visual perceptions in automated systems is one of the 
study's limitations. To improve design customization and innovation in ceramic packaging, future 
studies should investigate a more thorough integration of AI-driven user experience suggestions. 

REFERENCE 

1. Ji S, Lin PS. Aesthetics of sustainability: research on the design strategies for emotionally 
durable visual communication design. Sustainability. 2022 Apr 13;14(8):4649. 

2. Liu L, Zhao H. Research on consumers’ purchase intention of cultural and creative products—
Metaphor design based on traditional cultural symbols. Plos one. 2024 May 
13;19(5):e0301678. 

3. An SY, Ngayo G, Hong SP. Applying Blockchain, Causal Loop Diagrams, and the Analytical 
Hierarchy Process to Enhance Fifth-Generation Ceramic Antenna Manufacturing: A 
Technology–Organization–Environment Framework Approach. Systems. 2024 May 
24;12(6):184. 



Peng, B.                                                                                        Visual Communication Style Analysis Combined with Computer Learning 

 

17220 

4. Rotondi C, Gironi C, Ciufo D, Diana M, Lucibello S. Bioreceptive Ceramic Surfaces: Material 
Experimentations for Responsible Research and Design Innovation in Circular Economy 
Transition and “Ecological Augmentation”. Sustainability. 2024 Apr 11;16(8):3208. 

5. Kandavalli SR, Kandavalli SR, Ruban RS, Lo CH, Kumar R, Pruncu CI. A conceptual analysis on 
ceramic materials used for dental practices: manufacturing techniques and microstructure. 
ECS Journal of Solid State Science and Technology. 2022 May 9;11(5):053005. 

6. Chaudhary RP, Parameswaran C, Idrees M, Rasaki AS, Liu C, Chen Z, Colombo P. Additive 
manufacturing of polymer-derived ceramics: Materials, technologies, properties and 
potential applications. Progress in Materials Science. 2022 Jul 1;128:100969. 

7. Wang Y. A comprehensive MAGDM-based approach using EDAS and CRITIC as an auxiliary 
tool for quality evaluation of ceramic product modeling design. Journal of Intelligent & Fuzzy 
Systems. 2023 Dec(Preprint):1-5. 

8. Li WT, Cheng YH. Creating Sustainable Development of the Destination with Tea Public 
Version Packaging Design by Obtaining a Relational Space Concept. Sustainability. 2022 Jul 
28;14(15):9256. 

9. Rosiak A, Józefowska A, Sekulska-Nalewajko J, Gocławski J, Kałużna-Czaplińska J. Funerary 
vs. domestic vessels from the Hallstatt period. A study on ceramic vases from the Milejowice 
settlement and the Domasław cemetery. Scientific Reports. 2024 Aug 27;14(1):19942. 

10. Chen TY, Chang WC, Hsieh KJ, Chang CT. Advancing Taiwan's traditional craft products: A 
modular product design model of manufacturing technologies. Technology in Society. 2022 
Nov 1;71:102103. 

11. Cumbajin E, Rodrigues N, Costa P, Miragaia R, Frazão L, Costa N, Fernández-Caballero A, 
Carneiro J, Buruberri LH, Pereira A. A real-time automated defect detection system for 
ceramic pieces manufacturing process based on computer vision with deep learning. Sensors. 
2023 Dec 31;24(1):232. 

12. Zhou J, Li L, Lu L, Cheng Y. Machine learning-based quality optimisation of ceramic extrusion 
3D printing deposition lines. Materials Today Communications. 2024 Oct 28:110841. 

13. Zong X, Wu S, Lin K, Zhang J, Li Y, Lu D, Deng X, Lu S, Qiu J, Shao Y, Wu S. Advanced ceramics 
with integrated structures and functions: Machine learning prediction and experimental 
verification. Ceramics International. 2024 Jul 1;50(13):24126-38. 

14. Han T, Huang J, Sant G, Neithalath N, Kumar A. Predicting mechanical properties of ultrahigh 
temperature ceramics using machine learning. Journal of the American Ceramic Society. 2022 
Nov;105(11):6851-63. 

15. Deng, Y., Fu, S., Guo, J., Xu, X. and Li, H., 2023. Anisotropic collective variables with machine 
learning potential for ab initio crystallization of complex ceramics. ACS nano, 17(14), 
pp.14099-14113. 

16. Pan H, Li G, Feng H, Li Q, Sun P, Ye S. Surface defect detection of ceramic disc based on 
improved YOLOv5s. Heliyon. 2024 Jun 13. 

17. Saif S, Mubin S, Abbass W, Aslam F, Alyousef R. Utilizing machine learning to integrate silica-
based production waste material in ceramic tiles manufacturing: Progressing toward 
sustainable solutions. Ceramics International. 2024 Jun 1;50(11):18880-906. 

18. Zhang B, Shi D, Liu C, Hao W, Yang X. Physics-informed machine learning with high-
throughput design module for evaluating rupture life and guiding design of oxide/oxide 
ceramic matrix composites. Ceramics International. 2023 Nov 15;49(22):34945-57. 



Peng, B.                                                                                        Visual Communication Style Analysis Combined with Computer Learning 

 

17221 

19. Bavdekar S, Hennig RG, Subhash G. Augmenting the discovery of computationally complex 
ceramics for extreme environments with machine learning. Journal of Materials Research. 
2023 Dec 14;38(23):5055-64. 

20. Zhang J, Xu B, Xiong Y, Ma S, Wang Z, Wu Z, Zhao S. Design high-entropy carbide ceramics 
from machine learning. npj Computational Materials. 2022 Jan 14;8(1):5. 

21. Furushima R, Nakashima Y, Zhou Y, Hirao K, Ohji T, Fukushima M. Thermal conductivity 
prediction of sintered reaction bonded silicon nitride ceramics using a machine learning 
approach based on process conditions. Ceramics International. 2024 Mar 1;50(5):8520-6. 

22. Kireeva N, Tsivadze AY. Oxide ceramics of A2M3O12 family with negative and close-to-zero 
thermal expansion coefficients: Machine learning-based modeling of functional 
characteristics. Journal of Alloys and Compounds. 2024 Jun 30;990:174356. 

23. Zhao Y, Ke Y. Improved style transfer algorithm in decorative design of ceramic painting. 
Cogent Arts & Humanities. 2023 Dec 31;10(1):2247650. 

24. Huynh NT. An approach for classifying ceramic tile defects based on a two-dimensional 
Genetic CNN algorithm. Neural Computing and Applications. 2024 Jan;36(1):385-97. 

25. Sivabalaselvamani D, Nanthini K, Vanithamani S, Nivetha L. Performance of deep learning 
approaches for detection and classification of ceramic tile defects. Journal of Ceramic 
Processing Research. 2023 Feb;24(1):78-88. 

26. Lu F, Zhang Z, Guo L, Chen J, Zhu Y, Yan K, Zhou X. HFENet: A lightweight hand-crafted feature 
enhanced CNN for ceramic tile surface defect detection. International Journal of Intelligent 
Systems. 2022 Dec;37(12):10670-93. 

27. Chen Z, Xu T, Yu P. Coupling design features of material surface treatment for ceramic 
products based on ResNet. Science and Engineering of Composite Materials. 2024 Nov 
4;31(1):20240040. 

28. Tang H, Lu Y. Rhino application in ceramic packaging design teaching. Applied Mathematics 
and Nonlinear Sciences. 2023;8(2):1029-40. 

APPENDIX 
PIML Physics-informed machine 

learning  
UHTC Ultrahigh temperature 

ceramics  
3D Three dimensional ECA Efficient Channel Attention  
ML Machine learning  CMC Ceramic matrix composites  
IS Input size SVM Support Vector Machine 
SVR Support vector regression  SRBSN Sintered reaction-bonded 

silicon nitride  
MD Molecular dynamics  DL Deep learning  
HECC High-entropy ceramic 

carbides  
NTE Negative thermal expansion  

CNN Convolutional neural 
network  

CE Clustering error 

HFENet Hand-crafted feature 
enhanced convolutional 
neural network  

CL Convolutional layer 

CV Collective variable  mAP Mean average precision  
TC Thermal conductivity  PL Pooling layer 
XGBoost Extreme boosting DC Determination coefficient  
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SSD Single Shot MultiBox 
Detector 

2DG-CNN Two-dimensional genetic 
algorithm-based 
convolutional neural network  

FM Feature map AV Actual values 
PV Predicted values SR Square root 

 

 


