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Plant Growth-Promoting Rhizobacteria (PGPR) represent a promising 
avenue for sustainable agriculture, offering multifaceted benefits to 
plants, including enhanced growth, nutrient uptake, and stress 
tolerance. Abiotic stressors, such as drought, salinity, temperature 
extremes, and soil contamination, pose significant challenges to 
agricultural productivity and sustainability. In response, researchers 
have turned their attention to isolating PGPR from abiotic stressed 
regions, where microbial communities have evolved mechanisms to 
thrive under harsh environmental conditions. This review provides a 
comprehensive overview of the role of PGPR in mitigating abiotic stress 
in agriculture, with a focus on their isolation and characterization from 
stress-prone environments. 
The introduction sets the stage by highlighting the importance of PGPR 
in sustainable agriculture and the adverse effects of abiotic stress on 
plant growth and productivity. We discuss the mechanisms by which 
abiotic stressors disrupt plant physiology and metabolism, 
underscoring the need for innovative strategies to enhance crop 
resilience in the face of climate change. The rationale for isolating PGPR 
from abiotic stressed regions is elucidated, emphasizing its practical 
implications for addressing global challenges in agriculture and food 
security.  
This review examines methodologies for isolating stress-tolerant PGPR 
strains, factors influencing their abundance and diversity in abiotic 
stressed environments, and case studies demonstrating successful 
isolation and characterization efforts. We explore the applications of 
stress-tolerant PGPR in sustainable agriculture, including 
biofertilization, bioremediation, and crop protection, with a focus on 
real-world examples and field trials. Challenges and future directions 
in harnessing PGPR from abiotic stressed regions are discussed, 
highlighting the need for scalable solutions and interdisciplinary 
collaborations. 
In conclusion, harnessing stress-tolerant PGPR from abiotic stressed 
regions holds great promise for sustainable agriculture, offering 
innovative solutions to mitigate the adverse effects of climate change 
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on crop productivity and environmental sustainability. Through a 
comprehensive analysis of current research findings and future 
perspectives, this review aims to underscore the significance of PGPR-
based strategies for sustainable development and food security in a 
changing climate.  

INTRODUCTION   

Plant Growth-Promoting Rhizobacteria (PGPR) play a crucial role in sustainable agriculture by 
enhancing plant growth, improving nutrient uptake, and conferring resistance against various biotic 
and abiotic stresses.[1] These beneficial microbes, commonly found in the rhizosphere, interact 
symbiotically with plants, promoting their growth and development.[2,3] In recent years, there has 
been growing recognition of the importance of PGPR in mitigating the adverse effects of abiotic 
stressors, such as drought, salinity, extreme temperatures, and soil contamination, on crop 
productivity.[4,5] As climate change exacerbates the frequency and intensity of these stressors, the 
need to identify and harness stress-tolerant PGPR strains becomes increasingly urgent for ensuring 
food security and environmental sustainability.[6,7] 

Abiotic stressors pose significant challenges to agricultural productivity, affecting plant physiology, 
metabolism, and overall growth. Drought, for example, disrupts water availability, leading to reduced 
photosynthetic activity and yield losses, while salinity inhibits nutrient uptake and imposes osmotic 
stress on plants.[8,9] Temperature extremes can disrupt enzymatic processes and alter membrane 
fluidity, compromising plant resilience to stress.[10] These challenges underscore the importance of 
understanding the intricate interactions between plants and their associated microbiota, particularly 
PGPR, in adapting to and mitigating the effects of abiotic stress in agricultural ecosystems.[11] 

Considering these challenges, the isolation of PGPR from abiotic stressed regions emerges as a 
promising strategy for sustainable agriculture. Abiotic stressed environments, such as arid and saline 
soils, harbor microbial communities adapted to survive and thrive under harsh conditions.[12] By 
isolating PGPR from these environments, researchers can identify strains with enhanced stress 
tolerance and explore their potential applications in agricultural systems.[13] Furthermore, studying 
PGPR from abiotic stressed regions provides insights into the mechanisms underlying microbial 
adaptation to environmental stress, which can inform strategies for enhancing plant resilience in the 
face of climate change.[14] 

The rationale for isolating PGPR from abiotic stressed regions extends beyond mere academic 
curiosity; it holds practical implications for addressing global challenges in agriculture and food 
security.[15] By elucidating the role of stress-tolerant PGPR in enhancing crop resilience and 
productivity, this research contributes to the development of sustainable farming practices that 
minimize reliance on chemical inputs and mitigate environmental degradation.[16,17] Moreover, 
harnessing the potential of PGPR from abiotic stressed regions aligns with the principles of precision 
agriculture, wherein microbial inoculants are tailored to specific environmental conditions and crop 
requirements, thereby optimizing resource use efficiency, and minimizing ecological 
footprint.[18,19] 

In this review, we will explore the role of PGPR in mitigating abiotic stress in agriculture, with a focus 
on their isolation from abiotic-stressed regions. [20,21] We will examine the mechanisms underlying 
PGPR-mediated stress tolerance in plants, discuss methodologies for isolating stress-tolerant PGPR 
strains, and evaluate their potential applications in sustainable agriculture. [22,23] Through a 
comprehensive analysis of current research findings and future perspectives, we aim to highlight the 
significance of harnessing PGPR from abiotic stressed regions for sustainable development and food 
security in a changing climate. [24,25] 
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ABIOTIC STRESSES IN AGRICULTURE 

In the realm of agricultural sustainability, Plant Growth-Promoting Rhizobacteria (PGPR) play a 
pivotal role in alleviating the detrimental impacts of abiotic stresses on plant growth and 
productivity.[26] PGPR is a diverse group of soil bacteria that establish symbiotic relationships with 
plants, particularly in the rhizosphere, where they exert beneficial effects on plant growth through 
various mechanisms.[27] One primary avenue through which PGPR contributes to stress mitigation 
is by enhancing nutrient uptake and utilization in plants.[28] Through processes such as nitrogen 
fixation, solubilization of phosphates, and production of growth-promoting hormones like auxins and 
cytokinins, PGPR assists plants in acquiring essential nutrients, even under conditions of nutrient 
scarcity induced by abiotic stressors like drought and salinity.[29] 

Moreover, PGPR employs a range of direct and indirect mechanisms to bolster plant stress tolerance 
and resilience.[30] Direct mechanisms involve the synthesis and secretion of stress-responsive 
compounds such as osmoprotectants, antioxidants, and enzymes that detoxify reactive oxygen 
species (ROS), thus alleviating oxidative stress induced by abiotic stressors.[31] Additionally, PGPR 
can modulate plant hormone levels, regulate stomatal conductance, and activate stress-responsive 
gene expression pathways in host plants, enhancing their capacity to withstand environmental 
stressors. Indirectly, PGPR contributes to plant stress resilience by antagonizing phytopathogens, 
inducing systemic resistance, and promoting plant defense mechanisms, thereby reducing the 
susceptibility of plants to stress-induced diseases, and improving overall crop health and yield 
potential.[32] The multifaceted mechanisms employed by PGPR highlight their potential as 
sustainable bioresources for bolstering agricultural resilience and productivity in the face of global 
environmental challenges.[33] 

Furthermore, the efficacy of PGPR-mediated stress mitigation is not only confined to laboratory 
experiments but has also been demonstrated in field trials and real-world agricultural settings. 
Numerous studies have reported the beneficial effects of PGPR inoculation on crop performance 
under various abiotic stress conditions, including drought, salinity, and heavy metal 
contamination.[34] By harnessing stress-tolerant PGPR strains and integrating them into agricultural 
practices, farmers can reduce their reliance on chemical inputs, enhance soil fertility and health, and 
sustainably improve crop yields. Additionally, the use of PGPR-based biofertilizers and biostimulants 
offers a cost-effective and environmentally friendly approach to enhancing agricultural productivity 
while minimizing the ecological footprint of farming operations.[35] Overall, the widespread 
adoption of PGPR-based strategies holds immense promise for promoting agricultural sustainability 
and food security in the face of escalating environmental challenges.[36] 

 

Figure 1. Abiotic Stress [37] 
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Table 1. Plant growth-promoting rhizobacteria (PGPR) are employed to alleviate stress in 
agricultural settings. [38-43] 

Abiotic Stress Plant Species Rhizobacteria Plant Growth-
Promoting Process 

Drought Maize (Zea mays) Pseudomonas putida, 
Bacillus 
amyloliquefaciens, 
Enterobacter cloacae, 
Rhizobium 
leguminosarum 

Production of 
osmolytes and 
exopolysaccharides to 
improve water use 
efficiency and root 
protection 

Salinity Soybean (Glycine max) Bacillus subtilis, 
Halomonas sp., 
Marinobacter sp., 
Azospirillum 
brasilense, 
Pseudomonas stutzeri 

Production of 
siderophores to 
chelate iron and 
improve nutrient 
uptake 

Heat Stress Tomato (Solanum 
lycopersicum) 

Azospirillum 
brasilense, 
Arthrobacter sp., 
Pseudomonas 
fluorescens, 
Rhizobium etli, 
Bacillus megaterium 

Production of 
phytohormones to 
stimulate root growth 
and enhance stress 
tolerance 

Heavy Metal 
Toxicity 

Wheat (Triticum aestivum) Arthrobacter sp., 
Pseudomonas 
aeruginosa, 
Ochrobactrum 
anthropi, 
Sinorhizobium 
meliloti, Klebsiella 
pneumoniae 

Biodegradation of 
heavy metals and 
mobilization of 
nutrients 

Drought Maize (Zea mays) Pseudomonas putida, 
Bacillus 
amyloliquefaciens, 
Enterobacter cloacae, 
Rhizobium 
leguminosarum 

Production of 
osmolytes and 
exopolysaccharides to 
improve water use 
efficiency and root 
protection 

Salinity Soybean (Glycine max) Bacillus subtilis, 
Halomonas sp., 
Marinobacter sp., 
Azospirillum 
brasilense, 
Pseudomonas stutzeri 

Production of 
siderophores to 
chelate iron and 
improve nutrient 
uptake 

Heat Stress Tomato (Solanum 
lycopersicum) 

Azospirillum 
brasilense, 
Arthrobacter sp., 
Pseudomonas 
fluorescens, 
Rhizobium etli, 
Bacillus megaterium 

Production of 
phytohormones to 
stimulate root growth 
and enhance stress 
tolerance 
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Heavy Metal 
Toxicity 

Wheat (Triticum aestivum) Arthrobacter sp., 
Pseudomonas 
aeruginosa, 
Ochrobactrum 
anthropi, 
Sinorhizobium 
meliloti, Klebsiella 
pneumoniae 

Biodegradation of 
heavy metals and 
mobilization of 
nutrients 

Drought Maize (Zea mays) Pseudomonas putida, 
Bacillus 
amyloliquefaciens, 
Enterobacter cloacae, 
Rhizobium 
leguminosarum 

Production of 
osmolytes and 
exopolysaccharides to 
improve water use 
efficiency and root 
protection 

Plants encounter a variety of environmental challenges known as abiotic stresses, which can 
significantly hinder their growth and productivity. [44,45] These stresses include drought, salinity, 
heat stress, and heavy metal toxicity. Fortunately, a group of beneficial bacteria called plant growth-
promoting rhizobacteria (PGPR) offers a potential solution. These bacteria colonize the root zone 
(rhizosphere) of plants and engage in various mechanisms to promote plant growth and enhance 
tolerance to abiotic stresses. [46,47] 

Combating Drought: Maize (Zea mays) cultivation can be significantly impacted by drought 
conditions.[48] Several PGPR species can mitigate these effects. Pseudomonas putida is well-known 
for producing osmolytes and exopolysaccharides, which help plants retain water and improve water 
use efficiency.[49] Bacillus amyloliquefaciens can also contribute by colonizing roots and 
promoting the production of stress-protective enzymes. Enterobacter cloacae and Rhizobium 
leguminosarum further enhance drought tolerance through nitrogen fixation and phosphate 
solubilization, respectively, ensuring essential nutrients are available for stressed plants. [50,51] 

Alleviating Salinity Stress: Soybean (Glycine max) is a valuable crop but can be sensitive to the high 
salt content in the soil. [52,53] PGPR helps in these conditions. Bacillus subtilis is a key player, 
producing siderophores that chelate iron, making it more accessible to plants even in saline 
environments. Halomonas sp. and Marinobacter sp., naturally adapted to salty environments, 
further contribute by solubilizing mineral nutrients trapped in saline soils. Azospirillum brasilense 
and Pseudomonas stutzeri join the effort by fixing atmospheric nitrogen and promoting root 
growth, respectively, strengthening the plant's overall resilience.[54] 

Mitigating Heat Stress: Tomato (Solanum lycopersicum) production can suffer under high 
temperatures. PGPR offers support through various mechanisms. Azospirillum brasilense is known 
for producing phytohormones like auxins and cytokinins, which stimulate root growth and enhance 
stress tolerance.[55] Arthrobacter sp. contributes by producing compatible solutes that protect 
plant cells from heat damage. Pseudomonas fluorescens joins the fight by synthesizing 
siderophores, ensuring iron availability for essential plant processes even during heat stress. 
Rhizobium etli and Bacillus megaterium further bolster plant health through nitrogen fixation and 
phosphate solubilization, respectively, ensuring stressed plants have access to vital nutrients. [56,57] 

Countering Heavy Metal Toxicity: Wheat (Triticum aestivum) growth can be hampered by heavy 
metal contamination in soil. PGPR offers some relief through various processes. Arthrobacter sp. 
can degrade certain heavy metals, rendering them less harmful to plants.[58] Pseudomonas 
aeruginosa contributes by chelating heavy metals, reducing their free ion concentration and 
potential toxicity. Ochrobactrum anthropi and Sinorhizobium meliloti further assist by 
solubilizing phosphates and fixing atmospheric nitrogen, respectively, ensuring stressed plants have 
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access to essential nutrients for growth despite the presence of heavy metals.[59] Klebsiella 
pneumoniae joins the effort by producing siderophores, facilitating iron uptake even in heavy metal-
contaminated soils. 

This highlights the diverse range of PGPR and its mechanisms for promoting plant growth and 
enhancing tolerance to various abiotic stresses. By harnessing the power of these beneficial bacteria, 
we can potentially improve agricultural productivity and ensure the sustainability of crop production 
even in challenging environmental conditions.[60] 

ROLE OF PGPR IN MITIGATING ABIOTIC STRESS 

The isolation of Plant Growth-Promoting Rhizobacteria (PGPR) from abiotic stressed regions 
represents a critical step in harnessing their potential for sustainable agriculture.[61] Methodologies 
for isolating PGPR from soil and plant rhizosphere vary, encompassing classical microbiological 
techniques as well as modern molecular biology approaches.[62] Classical methods involve serial 
dilution plating on selective media followed by biochemical and physiological characterization of 
isolated colonies, while molecular techniques such as PCR-based screening and metagenomic 
analysis enable the identification and characterization of specific PGPR strains based on their genetic 
makeup and functional traits.[63] Additionally, advancements in high-throughput sequencing 
technologies have revolutionized the study of microbial communities in abiotic stressed 
environments, facilitating the identification of novel PGPR species and their functional attributes.[64] 

Several factors influence the abundance and diversity of PGPR in abiotic stressed environments, 
including soil physicochemical properties, climatic conditions, and plant-microbe interactions. 
Abiotic stressors such as drought, salinity, and heavy metal contamination exert selective pressures 
on microbial communities, shaping their composition and functional diversity.[65] PGPR strains 
adapted to abiotic stressed environments often exhibit specialized metabolic pathways and stress-
responsive mechanisms that enable them to thrive under harsh conditions. Case studies of successful 
isolation and characterization of stress-tolerant PGPR strains provide valuable insights into the 
ecological significance and biotechnological potential of these microbes.[66] By elucidating the 
genetic and physiological mechanisms underlying PGPR-mediated stress tolerance, researchers can 
develop targeted strategies for enhancing crop resilience and productivity in abiotic stressed 
environments, thereby advancing the goals of sustainable agriculture and environmental 
conservation.[67] 

ISOLATION OF PGPR FROM ABIOTIC STRESSED REGIONS  

The isolation of Plant Growth-Promoting Rhizobacteria (PGPR) from abiotic stressed regions 
involves a range of methodologies tailored to capture the diverse microbial communities thriving in 
these environments.[68] Classical techniques for isolating PGPR from soil and plant rhizosphere 
typically involve serial dilution plating on selective media supplemented with carbon and nitrogen 
sources, followed by biochemical and physiological characterization of isolated colonies.[69] These 
methods allow researchers to culture and identify PGPR strains based on their morphological 
characteristics, metabolic activities, and plant growth-promoting traits.[70] In addition to traditional 
approaches, molecular biology techniques such as polymerase chain reaction (PCR) amplification of 
specific gene markers and next-generation sequencing enable the targeted isolation and 
characterization of PGPR strains based on their genetic composition and functional attributes.[70] 
Metagenomic analysis of soil and rhizosphere microbial communities further enhances our 
understanding of the abundance, diversity, and ecological roles of PGPR in abiotic stressed 
environments, providing valuable insights into their biotechnological potential for sustainable 
agriculture.[71] 

Several factors influence the abundance and diversity of PGPR in abiotic stressed environments, 
shaping the composition and functional traits of microbial communities. Soil physicochemical 
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properties, including pH, texture, moisture content, and nutrient availability, play a critical role in 
determining the distribution and activity of PGPR strains.[72] Abiotic stressors such as drought, 
salinity, temperature extremes, and heavy metal contamination exert selective pressures on 
microbial populations, favoring the proliferation of stress-tolerant PGPR species adapted to survive 
and thrive under adverse conditions.[73] Plant-microbe interactions also influence the abundance 
and diversity of PGPR in the rhizosphere, as plants release root exudates containing carbon 
compounds that attract and stimulate the growth of beneficial rhizobacteria. Understanding the 
complex interplay between environmental factors, plant physiology, and microbial ecology is 
essential for elucidating the mechanisms driving the dynamics of PGPR communities in abiotic 
stressed environments.[74] 

In addition to the classical microbiological techniques and modern molecular biology approaches 
mentioned earlier, another effective method for isolating Plant Growth-Promoting Rhizobacteria 
(PGPR) from abiotic stressed regions involves the use of selective growth media tailored to mimic 
the specific environmental conditions of the target habitat.[75] These specialized media formulations 
incorporate substrates and nutrients that favor the growth of stress-tolerant PGPR strains adapted 
to harsh environmental conditions such as aridity, salinity, or heavy metal contamination. By 
selectively enriching PGPR populations that thrive in these challenging environments, researchers 
can isolate strains with unique stress tolerance mechanisms and explore their potential applications 
in sustainable agriculture.[76] 

Moreover, culture-independent methods, such as metagenomic analysis and high-throughput 
sequencing, offer valuable insights into the diversity and functional potential of microbial 
communities in abiotic stressed environments.[77] These techniques involve extracting genetic 
material directly from soil or rhizosphere samples and sequencing the microbial DNA to identify and 
characterize PGPR strains based on their genetic composition and functional traits. Metagenomic 
analysis allows researchers to survey the entire microbial community present in each habitat, 
providing a comprehensive understanding of the ecological roles and biotechnological potential of 
PGPR in abiotic stressed environments.[78] By combining culture-dependent and culture-
independent approaches, researchers can gain a holistic understanding of the microbial diversity and 
functional dynamics in abiotic stressed regions, paving the way for the discovery of novel PGPR 
strains and their applications in sustainable agriculture.[79] 

Nitrogen Fixation  

Nitrogen is an indispensable macronutrient crucial for plant growth and development, playing vital 
roles in protein synthesis, photosynthesis, and the formation of nucleic acids.[80] However, the 
continuous depletion of nitrogen in agricultural soils poses a significant challenge.[81] Despite its 
abundance in the atmosphere, plants cannot directly utilize atmospheric nitrogen.[82] Herein lies 
the importance of Plant Growth-Promoting Rhizobacteria (PGPR), which play a pivotal role in 
nitrogen fixation and supplementing plant nutrition under such circumstances.[83] These nitrogen-
fixing bacteria can be categorized into two types: symbiotic and free-living nitrogen-fixing bacteria. 
They form symbiotic relationships with plants or exist freely in the soil, converting atmospheric 
nitrogen into a form that plants can readily absorb and utilize for their growth and development. [84-
87] 

Among the PGPR genera known for their nitrogen-fixing abilities are Bradyrhizobium, Rhizobium, 
Frankia, Mesorhizobium, and Sinorhizobium. These bacteria facilitate nitrogen fixation and supply 
plants with essential nitrogen, thus promoting overall plant health and vigor.[88] Notably, nitrogen-
fixing PGPR strains not only enhance plant nutrition but also exhibit nematicidal activity, offering a 
dual benefit to host plants. For instance, banana plants treated with nitrogen-fixing bacteria showed 
suppressed populations of harmful nematodes, leading to improved banana growth. [89,90] 
Similarly, bacteria like Paenibacillus polymyxa, known for their nitrogen-fixing capabilities, 
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contribute to plant development while also demonstrating effectiveness against plant-parasitic 
nematodes, thus contributing to sustainable agriculture practices.[91] 

Phytohormone formation 

The diversity among Plant Growth-Promoting Rhizobacteria (PGPR) strains can lead to the 
production of various plant growth-promoting chemicals, including phytohormones and plant 
growth regulators such as auxins (such as indole butyric acid, indole acetic acid, and phenylacetic 
acid), cytokinins (like trans-zeatin ribose, isopentenyl adenine riboside, isopentenyl adenosine, and 
zeatin), abscisic acid, gibberellic acid, ethylene, brassinosteroids, polyamines, jasmonates, 
strigolactones, salicylic acid, and other plant growth regulator compounds.[92-94] Among these, 
indole acetic acid stands out as the most prevalent phytohormone.[95] These microbial-produced 
phytohormones are recognized for their role in promoting plant development and enhancing plant-
bacterial interactions. They primarily function by stimulating elongation, cell division, tissue 
expansion, and other favorable effects on plant growth and metabolism.[96] Furthermore, the 
inclusion of bacteria capable of producing indole acetic acid has been linked to improved plant 
development and increased resistance to diseases. Phytohormones synthesized by PGPR have also 
been demonstrated to shield plants from the detrimental impacts of various environmental 
stressors.[97] 

The application of phytohormone-producing PGPR strains in the field, typically through seed 
application, holds promise for improving both plant growth and nematode biocontrol.[98] For 
example, studies have shown that the production of indole acetic acid by strains like Streptomyces 
fradiae NKZ-259 enhances plant growth while simultaneously reducing pest populations. Similarly, 
strains like Pseudomonas simiae MB751, which produce indole acetic acid, have been found to play 
a role in controlling nematode populations and promoting plant growth. [99,100] Hence, the ability 
of bacteria to directly influence phytohormone synthesis can significantly impact their effectiveness 
in stimulating plant growth.[101] 

Phosphate Solubilization 

Phosphorus, another vital element essential for plant development, plays diverse roles in facilitating 
nucleic acid formation, protein synthesis, tissue growth, cell division, and energy conversion within 
plants.[102,103] However, in agricultural settings, phosphate compounds often exist in insoluble 
forms, limiting their availability to plants.[104] In such scenarios, Plant Growth-Promoting 
Rhizobacteria (PGPR) play a crucial role by employing various mechanisms such as chelation, organic 
acid generation, and acidification to solubilize inaccessible phosphorus, making it available for plant 
uptake. Several genera of PGPR, including Arthrobacter, Bacillus, Enterobacter, Flavobacterium, 
Microbacterium, Pseudomonas, Rhizobium, Rhodococcus, and Serratia, are known to act as 
phosphate solubilizers. [105-107] These bacteria possess the capability to enhance phosphate 
bioavailability by solubilizing and mineralizing phosphate compounds present in the soil, thus 
benefiting plant growth and nutrient uptake. 

Studies have demonstrated the effectiveness of phosphate-solubilizing bacteria in suppressing 
populations of plant-parasitic nematodes. For instance, bacterial species like Pseudomonas 
fluorescens, Pseudomonas lilacinus, and Trichoderma viride have been found to reduce the 
populations of nematode cysts in potato plants.[108] Similarly, inoculating tomato plants with 
Bacillus megaterium not only improved growth parameters and nutrient contents but also led to a 
reduction in nematode populations. Additionally, certain phosphate-solubilizing bacteria like 
Brevibacillus laterosporus and Photorhabdus luminescens exhibit protease activity, which 
contributes to their ability to control nematode populations. [109,110] Overall, the application of 
phosphate-solubilizing PGPR strains holds promise for enhancing soil fertility, promoting plant 
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growth, and mitigating the detrimental effects of plant-parasitic nematodes in agricultural 
systems.[111] 

Siderophores and ammonia production 

Living organisms rely on iron for essential biological functions such as electron transport, 
respiration, photosynthesis, and enzyme activation.[112] However, iron often exists in an insoluble 
form in soil under aerobic conditions, posing a challenge for organisms to access it.[113] To 
overcome this limitation, Plant Growth-Promoting Rhizobacteria (PGPR) have evolved unique 
strategies to bind and transport insoluble iron by producing low molecular weight siderophores in 
environments with limited iron availability.[114] Various genera of PGPR, including Aeromonas, 
Azadirachta, Azotobacter, Azospirillum, Bacillus, Burkholderia, Enterobacter, Pseudomonas, 
Rhizobium, Serratia, and Streptomyces, contribute to iron mobilization through siderophore 
synthesis, facilitating iron uptake by plant cells and promoting plant growth and development.[115-
117] 

Moreover, certain PGPR strains like Enterobacter, Pseudomonas, and Bacillus possess multifaceted 
properties beneficial for plant development and exhibit nematicidal activity. These bacteria not only 
stimulate cell division, physiological processes, and tissue development in plants but also provide 
additional support to host plants in dealing with nematode infections.[118] PGPR strains exert a 
direct influence on plant development by modulating various physiological and biochemical 
pathways, thereby enhancing plant vigor and resilience.[119] In addition to their direct effects on 
plant growth, PGPR play a crucial role in assisting host plants in combatting nematode infections, 
highlighting their multifunctional roles in promoting plant health and productivity.[120] 

Potassium solublization 

Potassium is a crucial macronutrient required for various biochemical and physiological processes 
essential for plant development.[121] However, most of the potassium in soil exists in forms that are 
not readily accessible to plants. Rhizospheric microorganisms, including some phosphate-
solubilizing bacteria, play a vital role in making potassium more available to plants by solubilizing 
the insoluble forms and releasing them in a usable form. [122,123] To achieve potassium 
solubilization, Plant Growth-Promoting Rhizobacteria (PGPR) employ various mechanisms, 
including chelation, organic acid secretion, reduction, acidolysis, and ion exchange.[124] 

A diverse range of microbial species, such as Bacillus edaphicus, Acidithiobacillus ferrooxidans, 
Burkholderia spp., B. mucilaginosus spp., Pseudomonas spp., and Paenibacillus spp., are known to be 
involved in potassium solubilization processes.[125-127] These bacteria possess the ability to 
transform insoluble potassium compounds into soluble forms that plants can readily absorb and 
utilize for their growth and development.[128-131] Furthermore, inoculating soil with potassium-
solubilizing bacteria has been shown to have positive effects on tomato plant development and 
exhibit nematicidal activity, contributing to improved plant health and productivity.[132,133] 
Overall, the role of PGPR in potassium solubilization highlights their importance in enhancing soil 
fertility and promoting plant growth in agricultural ecosystems.[133] 

 

Figure 2. Effect of PGPR on Plant Growth 
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APPLICATIONS OF STRESS-TOLERANT PGPR IN SUSTAINABLE AGRICULTURE  

Stress-tolerant Plant Growth-Promoting Rhizobacteria (PGPR) offer multifaceted applications in 
sustainable agriculture, addressing key challenges related to nutrient availability, soil contamination, 
and crop protection. In the realm of biofertilization, stress-tolerant PGPR plays a crucial role in 
enhancing nutrient uptake and utilization in stressed plants.[134] By colonizing the rhizosphere and 
promoting the solubilization of nutrients such as nitrogen, phosphorus, and potassium, PGPR 
improves soil fertility and enhances plant growth even under conditions of nutrient scarcity induced 
by abiotic stressors like drought and salinity.[135,136] Additionally, PGPR produces plant growth-
promoting substances such as auxins, cytokinins, and gibberellins, which stimulate root growth and 
nutrient assimilation, further augmenting plant resilience to environmental stress.[137,138] 

In the context of bioremediation, stress-tolerant PGPR offer a promising strategy for mitigating the 
deleterious effects of soil contamination on plant growth and productivity. Through processes such 
as rhizodegradation, bioaccumulation, and metal sequestration, PGPR facilitate the remediation of 
contaminated soils by detoxifying pollutants and enhancing soil health.[139,140] Furthermore, 
stress-tolerant PGPR can alleviate the phytotoxic effects of heavy metals and organic pollutants on 
plants, enabling them to thrive in environments previously considered unsuitable for 
cultivation.[141,142] In crop protection, stress-tolerant PGPR demonstrates the ability to induce 
systemic resistance against both abiotic stressors and pathogens.[143] By activating plant defense 
mechanisms and priming the immune system, PGPR confer enhanced resistance to drought, salinity, 
temperature extremes, and microbial pathogens, thereby reducing crop losses and improving yield 
stability.[144] Case studies and field trials have provided compelling evidence of the effectiveness of 
stress-tolerant PGPR in real-world agricultural settings, validating their potential as sustainable 
bioresources for enhancing crop resilience and productivity in the face of environmental 
challenges.[145] 

CHALLENGES AND FUTURE DIRECTIONS  

Challenges and future directions in the utilization of Plant Growth-Promoting Rhizobacteria (PGPR) 
in agriculture encompass a range of key considerations essential for maximizing their potential 
impact on sustainable farming practices. Scaling up PGPR-based interventions for large-scale 
agricultural systems presents a significant challenge due to the complexity of microbial interactions 
in diverse agroecosystems.[146] While laboratory and small-scale field trials have demonstrated the 
efficacy of PGPR in enhancing crop productivity and resilience to abiotic stresses, translating these 
findings into practical applications on a commercial scale requires careful optimization of 
formulation, delivery methods, and application protocols.[147] Moreover, ensuring the consistency 
and reliability of PGPR inoculants across different environmental conditions and crop species is 
essential for maximizing their efficacy and cost-effectiveness in diverse agricultural settings.[148] 
Addressing logistical and technological challenges associated with large-scale production and 
distribution of PGPR inoculants, as well as integrating them into existing agricultural practices, will 
be crucial for realizing the full potential of PGPR-based strategies in sustainable 
agriculture.[149,150] 

Furthermore, advancing our understanding of the complex interactions between PGPR, plants, and 
abiotic stressors is essential for optimizing their use in mitigating environmental stresses and 
enhancing crop resilience.[151-154] Elucidating the molecular mechanisms underlying PGPR-
mediated stress tolerance in plants, as well as the signaling pathways involved in plant-microbe 
interactions, will provide valuable insights into the factors driving the effectiveness of PGPR-based 
interventions[155-158] Integrating multi-omics approaches, including genomics, transcriptomics, 
proteomics, and metabolomics, offers a powerful tool for unraveling the intricacies of microbial-plant 
interactions and identifying key genetic determinants of stress tolerance in PGPR strains. Harnessing 
advances in omics technologies for targeted isolation and characterization of stress-tolerant PGPR 
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will enable the development of tailored inoculants with enhanced efficacy and specificity for different 
environmental conditions and crop species.[159-162] Moreover, addressing policy implications and 
socio-economic considerations for promoting the adoption of PGPR-based strategies in agriculture, 
such as incentivizing sustainable farming practices, supporting research and development initiatives, 
and fostering collaboration between stakeholders, will be essential for realizing the potential of PGPR 
as a viable and environmentally friendly solution for enhancing agricultural productivity and 
resilience in a changing climate.[163].some PGPR species of Azospirillum  also have nitrogen fixing 
abilities and stress tolerance effect .[164]. Plants with systemic induced resistance (SIR) are better 
able to fend off diseases caused by a wide range of pathogens. The efficacy of oxalic acid to induce 
SIR in tomato (Lycopersicon esculentum Mill.) against Fusarium oxysporum f.sp. lycopersici (Fol)-
caused wilt was investigated using a susceptible cultivar in a climate chamber. [165]. 

CONCLUSION 

In conclusion, the utilization of stress-tolerant Plant Growth-Promoting Rhizobacteria (PGPR) from 
abiotic stressed regions holds immense potential for revolutionizing sustainable agriculture. This 
review has emphasized the multifaceted benefits of PGPR in mitigating abiotic stressors such as 
drought, salinity, temperature extremes, and soil contamination, while simultaneously enhancing 
plant growth, nutrient uptake, and stress tolerance. By isolating and harnessing stress-tolerant PGPR 
strains from harsh environmental conditions, researchers can unlock innovative solutions to 
improve crop resilience, productivity, and environmental sustainability in the face of climate change. 

Moving forward, addressing challenges, and exploring future directions in PGPR-based interventions 
will be critical for realizing their full potential in sustainable agriculture. Scaling up PGPR-based 
strategies for large-scale agricultural systems demands optimization of formulation, delivery 
methods, and application protocols, alongside ensuring consistency and reliability across diverse 
environmental conditions and crop species. Overcoming logistical and technological barriers 
associated with the production and distribution of PGPR inoculants, and integrating them into 
existing agricultural practices, will be pivotal for maximizing their efficacy and cost-effectiveness. 
Through interdisciplinary collaborations and concerted efforts, we can harness the power of stress-
tolerant PGPR to transform agricultural systems, mitigate the adverse effects of climate change on 
crop productivity, and foster a more resilient and sustainable future for generations to come. 
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