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This paper investigates the application of Value at Risk (VaR) 
methodology in insurance companies, highlighting its statistical 
foundation and capacity to measure market risk comprehensively. 
VaR offers a probabilistic estimate of potential portfolio losses over a 
specified period, given normal market conditions. While traditional 
risk measures like standard deviation fail to distinguish between 
positive and negative deviations, VaR focuses solely on potential 
negative outcomes, aligning better with the nature of risk assessment. 
This study examines three primary VaR calculation methods-
historical simulation, Delta-normal, and Monte Carlo simulation-each 
with distinct advantages and limitations. Furthermore, the paper 
discusses the regulatory frameworks, Basel II and Solvency II, which 
mandate stringent confidence levels for financial institutions, 
underscoring the critical role of accurate VaR calculations in 
maintaining financial stability. 

INTRODUCTION   

In the complex landscape of financial risk management, insurance companies must employ 
sophisticated methods to accurately assess and mitigate potential losses. One such method, Value at 
Risk (VaR), has emerged as a pivotal tool in quantifying market risk. VaR provides a probabilistic 
estimate of the potential loss in value of a portfolio over a defined period, given normal market 
conditions, and is instrumental in strategic decision-making processes (Jorion, 2003). 

Traditional risk assessment metrics, such as standard deviation, are limited in their ability to 
differentiate between positive and negative deviations from the mean, thereby failing to address the 
inherent asymmetry in risk management (Bodie, Kane, & Marcus, 2009). In contrast, VaR specifically 
focuses on potential negative outcomes, making it a more suitable metric for evaluating the financial 
stability of insurance portfolios. The regulatory environment further underscores the importance of 
VaR. Frameworks such as Basel II and Solvency II mandate rigorous risk assessment standards, with 
Solvency II requiring a 99.5% confidence level for insurance companies. These regulatory 
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requirements highlight the necessity for robust risk assessment methodologies that can provide 
accurate and reliable measures of potential losses (Tsay, 2002; Scott & Edward, 1990). 

This paper aims to explore the theoretical foundations of VaR, comparing its various calculation 
methods-historical simulation, Delta-normal, and Monte Carlo simulation-and examining their 
practical applications within the insurance industry. By doing so, it seeks to elucidate the strengths 
and limitations of VaR, offering insights into how insurance companies can effectively incorporate 
this tool into their risk management strategies. The methodology section will detail the data 
requirements, computational processes, and specific advantages and disadvantages of each VaR 
calculation method. Additionally, the paper will discuss the implications of regulatory frameworks 
on VaR calculations, emphasizing the critical role of compliance in maintaining financial stability 
(Bayer, 2017; Rejda, 1995). 

Through this comprehensive analysis, the paper will demonstrate that while VaR is an invaluable tool 
for risk management, it must be used judiciously, in conjunction with other risk assessment 
techniques, to provide a holistic view of potential market risks. 

1. LITERATURE REVIEW 

Value at Risk (VaR) has emerged as a critical tool in financial risk management, especially for 
insurance companies that need to quantify market risk and make informed investment decisions. 
VaR provides a probabilistic estimate of the maximum potential loss in portfolio value over a 
specified period, assuming normal market conditions (Smith, 2018). It offers a more focused risk 
measure compared to traditional metrics like standard deviation, which do not distinguish between 
positive and negative deviations from the mean. 

Historical Simulation Method 

The historical simulation method is one of the simplest approaches to calculating VaR. It applies 
current portfolio weights to historical price changes to simulate potential future losses. This 
method's primary advantage is its straightforward implementation and the absence of assumptions 
about asset return distributions. However, it relies heavily on historical data, which may not always 
capture extreme market events, potentially leading to an underestimation of risk (Johnson & Lee, 
2019). 

Delta-Normal Method 

The Delta-normal method is a parametric approach that assumes normally distributed risk factors 
and linear portfolio exposures. This method is computationally efficient and easy to implement for 
portfolios with numerous assets. However, it relies on the normal distribution assumption, which 
can be problematic since financial returns often exhibit fat tails and skewness. This method does not 
handle the non-linear relationships present in portfolios with options or other derivatives (Miller & 
Zhang, 2017). Despite its simplicity, the Delta-normal method may underestimate the occurrence of 
large deviations due to its reliance on normal distributions (Jones & King, 2016). 

Monte Carlo Simulation Method 

The Monte Carlo structural method involves generating numerous random price paths based on 
statistical properties derived from historical data. This method is highly flexible and capable of 
modeling complex portfolios with non-linear risks. It is particularly useful in scenarios where the 
portfolio is illiquid, and historical data are insufficient. However, Monte Carlo simulations demand 
significant computational resources and precise model specifications. The accuracy of the results 
heavily depends on the validity of the underlying model assumptions (Brown & Smith, 2020). 

 



 Mala et al.                                                                                                        Comprehensive Risk Assessment in Insurance Companies 

 

1396 

Regulatory Frameworks 

Regulatory frameworks such as Basel II and Solvency II mandate robust VaR methodologies to ensure 
financial institutions maintain adequate capital reserves. Basel II requires a 99% confidence level 
over a 10-day horizon for banks, while Solvency II mandates a 99.5% confidence level over a one-
year horizon for insurance companies. These regulations emphasize the importance of accurate VaR 
calculations in safeguarding financial stability (Anderson, 2016; Parker, 2015). 

Comparative Analysis and Practical Applications 

Comparing the primary VaR calculation methods reveals distinct advantages and limitations. 
Historical simulation is simple but may not capture future market dynamics. The Delta-normal 
method is efficient but relies on assumptions that may not hold in all scenarios. Monte Carlo 
simulation offers the most flexibility and accuracy but at the cost of increased complexity and 
computational demands. In practice, insurance companies utilize VaR to guide investment decisions, 
assess portfolio risk, and comply with regulatory requirements. Despite its widespread use, VaR has 
limitations. It is inherently backward-looking, relying on historical data to predict future risks, which 
may not always be accurate. Additionally, VaR does not account for liquidity risk, operational risk, or 
other factors that could significantly impact an insurance company's financial health (Smith, 2018; 
Johnson & Lee, 2019). Therefore, while VaR is a valuable tool for risk management, it should be used 
alongside other risk assessment techniques to provide a comprehensive view of potential market 
risks. 

2. Risk measurement and assessment using VaR 

Value at Risk (VaR) has become an essential tool in financial risk management, particularly for 
insurance companies that need to quantify market risk and make informed strategic decisions. VaR 
provides a probabilistic estimate of the potential loss in value of a portfolio over a specified period 
and is crucial for understanding the market risk associated with various financial assets (Smith, 
2018). The historical simulation method is one of the simplest approaches to calculating VaR. It 
applies current portfolio weights to historical price changes to simulate potential future losses. This 
method is advantageous due to its straightforward implementation and the lack of assumptions 
about the distribution of asset returns. However, its reliance on historical data can be a significant 
limitation, especially if past data do not include extreme market events, potentially leading to an 
underestimation of risk (Johnson & Lee, 2019). 

The Delta-normal method, a parametric approach, assumes that asset returns are normally 
distributed and that the portfolio is a linear combination of these returns. This method is 
computationally efficient and easy to implement for portfolios with numerous assets. However, its 
reliance on the normal distribution assumption can be problematic, as financial returns often exhibit 
fat tails and skewness, which this method may not capture adequately (Miller & Zhang, 2017). 
Additionally, it does not handle the non-linear relationships present in portfolios containing options 
or other derivatives. Monte Carlo simulation is a more complex approach that generates numerous 
random price paths based on statistical properties derived from historical data. This method can 
model complex portfolios with non-linear risks and capture the fat tails and skewness observed in 
financial return distributions. However, Monte Carlo simulations demand significant computational 
resources and precise model specifications. The quality of the results depends heavily on the chosen 
model parameters and the assumptions about the distribution of returns (Brown & Smith, 2020). 
Regulatory frameworks such as Basel II and Solvency II highlight the importance of robust VaR 
methodologies. Basel II, applicable to banks, requires a 99% confidence level over a 10-day horizon, 
while Solvency II, tailored for insurance companies, mandates a 99.5% confidence level over a one-
year horizon. These regulations underscore the necessity for accurate VaR calculations to ensure 
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financial institutions maintain adequate capital reserves to cover potential losses (Anderson, 2016; 
Parker, 2015). 

Comparing the primary VaR calculation methods—historical simulation, Delta-normal, and Monte 
Carlo simulation—reveals distinct advantages and limitations. Historical simulation is simple and 
easy to implement but may not capture future market dynamics. The Delta-normal method is 
computationally efficient but relies on the assumption of normally distributed returns, which may 
not always hold true. Monte Carlo simulation offers the most flexibility and accuracy but at the cost 
of increased computational complexity and the need for precise model specifications. In practice, 
insurance companies utilize VaR to guide investment decisions, assess portfolio risk, and comply with 
regulatory requirements. However, it is important to recognize the limitations of VaR. It is inherently 
backward-looking, relying on historical data to predict future risks, which may not always be 
accurate in dynamic market conditions. Furthermore, VaR does not account for liquidity risk, 
operational risk, or other factors that could impact an insurance company's financial health (Smith, 
2018; Johnson & Lee, 2019). Thus, while VaR is a valuable tool for risk management, it should be used 
alongside other risk assessment techniques to provide a comprehensive view of potential market 
risks. Investment risk assessment typically employs a statistical reliability level of 95% or 99%, 
indicating that the actual loss in 95% or 99% of cases will be less than or equal to the VaR value, with 
only 5% or 1% of cases potentially resulting in a higher loss. Basel II mandates a 99% confidence 
level for banks' portfolios, while Solvency II requires a 99.5% confidence level for insurance 
companies due to their unique risk profiles. Another critical parameter in VaR calculation is the time 
period, which is generally determined based on portfolio characteristics. Commercial banks often 
calculate VaR daily, while insurance companies, adhering to Solvency II, use an annual period. Basel 
II, addressing credit risk, utilizes a 10-day period for banks, adjusted by a coefficient ranging from 3 
to 4 depending on the accuracy of previous VaR tests. 

VaR calculation methods are diverse and can be categorized into two primary groups: local 
assessment methods and total assessment methods. Local assessment methods, such as the Delta-
normal method, apply analytical techniques. Total assessment methods include historical simulation, 
which uses long-term historical data, and the Monte Carlo structural method, which relies on 
randomly generated data based on estimated parameters and constraints. The three most commonly 
used VaR calculation methods in practice are the historical method, Monte Carlo simulation, and the 
Delta-normal method or variance-covariance method (Smith, 2018). 

3. VaR Method 

There are various approaches to determining Value at Risk (VaR), which can be broadly categorized 
into two primary groups: local assessment methods and total assessment methods. Local assessment 
methods involve the application of analytical techniques, with the Delta-normal method being a 
prominent example. This method assumes a known form of the stochastic process that describes the 
movement of yields or other economic results. The Delta-normal method is computationally efficient 
and easy to implement for portfolios with numerous assets. However, it relies on the assumption of 
normally distributed returns, which can be problematic since financial returns often exhibit fat tails 
and skewness (Miller & Zhang, 2017). 

Total assessment methods include the historical simulation method and the Monte Carlo structural 
method. The historical simulation method uses historical data over an extended period to estimate 
potential future losses. It applies current portfolio weights to historical price changes to simulate 
potential future losses. This method's primary advantage lies in its straightforward implementation 
and lack of distributional assumptions about asset returns. However, it can be significantly limited 
by its reliance on historical data, especially if the past data do not include extreme market events, 
potentially leading to an underestimation of risk (Johnson & Lee, 2019). 
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The Monte Carlo structural method, on the other hand, generates numerous random price paths 
based on statistical properties derived from historical data. This method can model complex 
portfolios with non-linear risks and capture the fat tails and skewness observed in financial return 
distributions. However, Monte Carlo simulations demand significant computational resources and 
precise model specifications. The quality of the results depends heavily on the chosen model 
parameters and the assumptions about the distribution of returns (Brown & Smith, 2020). 

In practice, the three most commonly used VaR calculation methods are the historical simulation 
method, Monte Carlo simulation, and the Delta-normal method, also known as the variance-
covariance method. Each method has its strengths and weaknesses, and the choice of method can 
depend on the specific characteristics of the portfolio and the available data. Historical simulation is 
simple and easy to implement but may not capture future market dynamics. The Delta-normal 
method is efficient but relies on assumptions that may not always hold true. Monte Carlo simulation 
offers the most flexibility and accuracy but at the cost of increased computational complexity and the 
need for precise model specifications (Smith, 2018). 

Regulatory frameworks such as Basel II and Solvency II underscore the necessity for accurate VaR 
calculations. Basel II, applicable to banks, mandates a 99% confidence level over a 10-day horizon. In 
contrast, Solvency II, tailored for insurance companies, requires a 99.5% confidence level over a one-
year horizon. These regulations ensure that financial institutions maintain adequate capital reserves 
to cover potential losses, highlighting the importance of robust VaR methodologies (Anderson, 2016; 
Parker, 2015). 

In practice, insurance companies use VaR to guide investment decisions, assess portfolio risk, and 
comply with regulatory requirements. However, it is important to recognize the limitations of VaR. 
It is inherently backward-looking, relying on historical data to predict future risks, which may not 
always be accurate in dynamic market conditions. Additionally, VaR does not account for liquidity 
risk, operational risk, or other factors that could impact an insurance company's financial health 
(Smith, 2018; Johnson & Lee, 2019). Therefore, while VaR is a valuable tool for risk management, it 
should be used alongside other risk assessment techniques to provide a comprehensive view of 
potential market risks. 

4. Historical simulation method  

The historical simulation method is a comprehensive approach to Value at Risk (VaR) that involves 
full evaluation of a portfolio's risk based on historical data. This method is relatively straightforward 
to implement but requires a substantial amount of relevant historical data. To accurately estimate 
potential future losses, it may be necessary to go back several years to obtain historical series on the 
performance rates of individual instruments (Johnson & Lee, 2019). 

In practice, the historical simulation method applies the current characteristics of a portfolio to 
historical data on the performance of financial instruments. This involves using the most recent 
actual weights of individual instrument values within the historical time series data. Essentially, this 
method reproduces historical data using the actual weights (participation) of individual positions in 
the overall portfolio. 

Changes in the value of the portfolio rate of return are calculated starting from the electricity: 
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Sorting data for rp proceeds (or other risk factors) so that they correspond to the X1-α quantile, 
where α is the level of confidence of VaR, and is taken as the difference between the expected value 
and the factor value of observed risk - the rate of return, which corresponds to the amount X1-α for 
a certain level of confidence α: 

A simple interpretation of this process includes: 

- Calculating the negative limit value of the random variable listed (X{0.95}) (according to the 
magnitude from the smallest to the highest value), after which the observed phenomenon 

occurs only in 5% of the total distribution (95% confidence level). 
- Subtracting the obtained value from the mean value of the distribution, which for most 

phenomena (such as prices, yield levels, etc.) is approximately zero. 
- Multiplying the obtained VaR value by the total value of the funds invested (in position, 

financial instrument, or total portfolio) to calculate the potential loss for the following day, if 
daily observations are used for the calculation. 

One of the primary advantages of the historical simulation method is that it does not require 
assumptions about the distribution of yields (yield norms). However, this method has a significant 
drawback: its reliance on historical data over a relatively short period may not provide valid 
conclusions about the movement of market prices. If the historical period does not contain certain 
market trends that are possible in the future, some risks may be overlooked (Brown & Smith, 2020). 

4.1.  Delta-Normal Method 

The Value at Risk (VaR) metric can also be defined analytically, starting from the premise that there 
exists a known stochastic process that accurately describes yield movements or other economic 
outcomes. The Delta-normal method, a type of analytical approach, offers a relatively simpler method 
for calculating VaR compared to historical simulation and Monte Carlo simulation. This approach 
assumes that the portfolio's exposure is a linear combination of normally distributed risk factors. 
Consequently, portfolio returns are typically assumed to follow a normal distribution, as the portfolio 
is a linear combination of normally distributed variables. The Delta-normal method focuses on a 
localized assessment of price movements or other risk factors and can be easily applied to a wide 
range of derivatives. It accommodates various types of data, including historical data, various 
optional data, or a combination thereof. While optional models are generally superior to historical 
ones, they are often challenging to obtain for all types of derivatives and their correlations. The Delta-
normal model only accounts for certain price values, in contrast to "full rating" models, which require 
a broader set of price inputs.              The primary advantage of this approach is its simplicity, which 
also serves as its main drawback. The Delta-normal method cannot adequately explain the nonlinear 
effects encountered with options. Additionally, this approach may underestimate the occurrence of 
large observations due to its reliance on normal distributions. The Risk Metrics method is 
fundamentally similar to the Delta-normal method, with the key difference being that the former 
translates price ratios into logarithmic form rather than using yield rates (Jones & King, 2016). 

4.2. Normal Distribution 

The normal distribution method is the most commonly used in the Value at Risk (VaR) calculation 
process, making it essential to understand its fundamental characteristics. The normal empirical 
distribution can serve as a rough approximation for a series of random variables, such as stock return 
rates, price movements, and other financial instruments (Taylor & Adams, 2016). The normal 
distribution is highly significant in statistics, primarily due to the central limit theorem. According to 
this theorem, a sufficiently large number of independent and identically distributed random 
variables will approximate a normal distribution. Thus, a large statistical sample will tend to exhibit 
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a normal distribution. This distribution is crucial in statistics because of its ease of use and stability. 
For example, if the daily returns of two securities can be approximated to a normal distribution, then 
the portfolio returns consisting of these two securities will also reflect a normal distribution. This 
characteristic allows the definition of the distribution of the average value of a random variable 
through the central limit theorem. The normal distribution assumes that the values of the random 
variable are centered around the average value, with values closer to the average having the highest 
probability. The parameter μ\muμ represents the expected value (mean), while the parameter 
σ\sigmaσ denotes the standard deviation. The first parameter, μ\muμ, indicates the central point of 
the distribution, and the second parameter, σ\sigmaσ, indicates the spread or dispersion around this 
central point. The distribution is fully described by these two parameters and is commonly denoted 
as N(μ,σ2)N(\mu, \sigma^2)N(μ,σ2). 

z=x−μσz = \frac{x - \mu}{\sigma}z=σx−μ 

By inserting the variable zzz, the above function can be expressed in the form: 

N (0,1) N (0,1) N (0,1) 

In this standardized form, instead of dealing with different values of μ\muμ and σ\sigmaσ, we use a 
normal distribution with parameters E(z)=0E(z) = 0E(z)=0 and Var(z)=1\text{Var}(z) = 1Var(z)=1. 
This standardization simplifies the normal distribution function and makes it easier to work with. 
For instance, approximately 68% of the data in a normal standard distribution lies between −1σ-1 
\sigma−1σ and +1σ+1 \sigma+1σ of the mean, and about 95% falls between −2σ-2 \sigma−2σ and 
+2σ+2 \sigma+2σ of the mean (Walker & Smith, 2017). 

To facilitate and simplify work with normal distribution, it is common to standardize by transforming 
the random variable x over the relation: 

By inserting the variable z, the above function can be expressed in the form: 

In this case, instead of distributing with different values of the parameters μ and σ, is taken a normal 
standardized distribution with parameters E (z) = 0 and Var (z) = 1, which in the short form can be 
expressed as N (0,1). 

Around 68% of the normal standard distribution is between −1 and +1 (μ + 1 σ), and approximately 
95% of the distribution falls between −2 and +2 (μ + 2 σ): 

Graph 1: Standardized normal distribution function 

 

Values of the standardized normal variable x 

Source: Jorion, 2003: 47. 
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From the graph it can be seen that the function is symmetric in relation to the mean value. The mean 
value of 0 is identical to the mode (values with the highest probability) and the median (the value 
that distributes the probability in two equal halves). 

Graph 3: Standardized normal distribution amount 

Source: Urosevic, 2016: 23 

     The following tables is given: 

Table 1: Low amounts of standardized normal distribution 

 Trust level% 

α 99,9 99,5 99,0 97,72 97,5 95,0 90,0 84,13 50,0 

Kv. (-
zα) 

-3,090 -
2,57
6 

-2,326 -2,000 -1,960 -1,645 -1,282 -1,000 0,000 

Source: Jorion, 2003:48.  

For example, the number 2,576 in the table - indicates that to the right of the mentioned value of the 
random variable Z is 99.5% of the normalized standard distribution. The value of α is called the trust 
level. 

By inverting relation (1) we can return to the normal variable x: 

x=μ+σz (2) 

5. Calculation of VaR – Use of normal distribution 

Portfolio productivity method  

Since VaR is the largest expected loss at a given level of trust, the simplest way is to calculate VaR 
using a portfolio return distribution. 

The portfolio productivity is calculated as the difference 

 

 Pt and Pt + 1 represent portfolio returns respectively at time t and t + 1. 

For calculation of VaR value we use the inverse transformation (2) for the values xα and zα: 

where xα = −VaR (because monetary loss can only take positive values), and z = −zα (because the 
value of the variable is exclusively in the left tail of the distribution), thus, by substituting the equation 
we get: 
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Example 1: An insurance company, under certain assumptions, can determine the maximum possible 
loss in its portfolio the next day, if it has valid data on the average and change (standard deviation) 
of the portfolio return. If the daily returns of the insurance company portfolio follow a normal 
distribution and if at some point the average daily return is 70,000 EURO and the standard deviation 
is 48,000 EURO using the data from Table 1, the VaR value for the trust level 95% is obtained:     VaR 
= 48.000*1,645 -70.000 = 8.960 EURO 

According to these assumptions, the insurance company's portfolio loss (VaR), with a 95% trust level, 
should not exceed 8,960 EURO. 

Revenue rate method  

Portfolio returns can be represented by the rate of return. Return on portfolio is calculated as 
proportion: 

 

where rp is revenue rate and Pt and Pt-1 portfolio revenues, respectively in the period t and t - 1. 

Assuming that the present value of the portfolio is P0, that the return rate rp of the portfolio is 
normally distributed with the mean value μ and the standard deviation σ, then the value of the 
portfolio at the end of the period is: 

 

with average P0 (1+ μ) and standard deviation P0σ. 

If we note the lowest value of the portfolio for several trust levels α as: 

 

Regarding the mean value (SV), i.e. the expected return value, VaR was taken as the difference 
between the expected return and the assumed minimum value of the portfolio P1 * with a given trust 
level α: 

If we perform a transformation, similar to the portfolio revenue rate method 

 

is obtained the final formula for calculating VaR on the portfolio return rate (Jorion, 2003,: 110−113): 

 

The value of the VaR indicator in relation to the expected return value is equal to the product of the 
portfolio value expressed in monetary terms, ,,za quantile” for the trust level α of the standardized 
normal variable N (0,1) and the standard rate deviation of revenue σ. 

Example 2: An insurance company, under certain assumptions, can determine the maximum possible 
loss in its portfolio in the following year, if it has data on the distribution (standard deviation) of its 
portfolio revenue rates, for the annual period and under the assumption of normality (in this case 
the expected value of the revenue rate is equal to 0). Let us take the following assumptions about a 
particular portfolio of insurance companies: 

• The initial value of portfolio P0 is 100 million EURO, 

• The standard deviation of the annual revenue σ is 15%, 

• The trust level is 95%, i.e. value per quantity is 1,645, 

• Time period is for one year. 
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Under these assumptions, the VaR value is calculated as below:  

VaR = P0zασ = 100 million EURO * 1,645 * 15% = 24,68 million EURO 

Therefore, the loss in the insurance company portfolio, with the stated assumptions and the trust 
level of 95%, for one year will not exceed the amount of 24.68 million EURO. 

If the confidence level is in line with the requirements of the Solvency II regulatory framework, i.e. it 
is 99.5%, the za quantile value is 2,576, and the VaR value is: 

VaR = P0zασ = 100 million EURO * 2,576 * 15% = 38,64 million EURO 

From the above example, it can be concluded that if the insurance company wants to determine the 
amount of maximum possible loss, which will not be exceeded in the following year (VaR), with a 
greater reliability (i.e. with a probability of 99.5%), the value of VaR will be higher. 

5.1. Delta-normal method 

For the sake of simplification, let us take the case of the Delta-normal assessment for a position whose 
VaR value depends only on one risk factor - price location S. 

The value P is a function of the price spot S, where time is the initial value: 

 

 

 

 

If Δ0 is the first partial derivative of the function P for the sum of the spot price S0: 

Assume that Δ0 is a constant and that the potential loss in value is a linear function of price change S. 
This derives that the largest loss in value at position P is determined by the lowest possible price at 
position S, so VaR = Δ0 AVaRS, assuming that the price change dS / S changes normally distributed 
with average value 𝜇 = 0, then according to the formula for the portfolio yield method we obtain 
(Jorion, 2003: 206-209): 

 

In the formula, Δ0 is taken as the absolute value to obtain a positive value of VaR (loss). 

5.2. Monte Carlo Structural Method 

The Monte Carlo structural method (SMC) for calculating Value at Risk (VaR) takes into account a 
wide range of possible values for financial variables and their correlations. This method is 
implemented in two primary stages. In the first stage, stochastic and parametric models for financial 
variables are defined based on historical data or other reliable sources. For example, the random 
variable is often assumed to be normally distributed, and parameters such as the mean and standard 
deviation are derived from historical data. These models provide the foundation for the subsequent 
simulations by capturing the essential statistical properties of the financial variables (Robinson & 
Mills, 2018). The second stage involves simulating prices for all variables of interest. This is achieved 
through pseudo-random number generation for each time period, creating numerous potential 
future scenarios for the portfolio's value. These simulations can capture the complexity and 
variability of the market, providing a robust framework for assessing risk. The Monte Carlo method 
is the most complex of the VaR calculation methods due to its comprehensive approach to modeling. 
It requires extensive knowledge of model parameters, which can be challenging to obtain. The 
simulations enable the creation of portfolio distributions that are too intricate to be analyzed using 
traditional analytical methods. In practice, this method is particularly useful in situations where the 
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portfolio position is illiquid, and data values are missing, necessitating the use of simulations to fill 
in the gaps (Anderson & Parker, 2019). The flexibility of simulation methods has increased with 
advancements in computing technology, making them more accessible and practical for financial risk 
management. However, their limitations should not be overlooked. The accuracy and reliability of 
Monte Carlo simulations heavily depend on the validity of the underlying model assumptions, such 
as the distribution form, parameters, and pricing functions. Errors in these assumptions can 
significantly impact the results, potentially leading to misleading risk assessments (Johnson & Black, 
2020). Despite its sophistication, the Monte Carlo method's simulation results are only as good as the 
model on which they are based. Therefore, it is crucial to ensure that the model assumptions are as 
accurate as possible to derive meaningful and reliable risk measures. 

6. CONCLUSION 

Value at Risk (VaR) provides a quantitative summary measure of potential portfolio losses due to 
normal market movements, offering a probabilistic estimate of the maximum expected loss over a 
given time period at a specified confidence level. This tool is invaluable for insurance companies as 
it guides investment decisions by identifying optimal combinations of investments to maximize 
returns while minimizing risks. By understanding the potential losses and structuring portfolios 
accordingly, insurers can achieve a favorable balance between potential returns and risks. Despite 
its widespread use and numerous advantages, VaR has notable limitations. One significant drawback 
is its retrospective nature; it relies on historical data to predict future risks, which may not always 
accurately reflect future market conditions. This reliance on past data and certain assumptions can 
lead to underestimation of risk, especially during periods of economic and financial crises, where 
market dynamics can change rapidly and unpredictably.Furthermore, the accuracy of VaR is 
contingent upon the validity of its underlying assumptions. If these assumptions do not hold true in 
real-world scenarios, the risk estimates provided by VaR may be misleading. Additionally, VaR does 
not account for all types of risks, such as liquidity risk or operational risk, which can also significantly 
impact an insurance company's financial health. Ultimately, while VaR is a powerful tool for risk 
management, it should be employed with caution and complemented by other risk assessment 
methods. It is essential for professionals using VaR to have a deep understanding of its methodology 
and limitations to effectively interpret its results and make informed decisions. In this context, VaR 
should be viewed as one component of a comprehensive risk management strategy, rather than a 
standalone solution. 
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