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This research presents the development of a novel adsorbent, ACDS@Tu, 
created by chemically modifying activated carbon (AC) derived from date 
seeds with thiourea (Tu) for the improved removal of Pb(II) ions from 
water. ACDS@Tu was characterized using FTIR, SEM, BET surface area 
analysis, and TGA, confirming the structural and functional modifications 
achieved through thiourea treatment. The surface area and pore volume 
were measured as 889 m²/g and 0.158 cm³/g for ACDS, reduced to 155 
m²/g and 0.03 cm³/g for ACDS@Tu. ACDS@Tu showed a substantial 
adsorption capacity of 310.9 mg/g under optimal conditions, aligning with 
the Langmuir isotherm model and achieving a high adsorption capacity of 
503.27 mg/g. Kinetic analysis indicated that the adsorption followed a PSO 
model. At the same time, thermodynamic studies revealed that the process 
was favorable, spontaneous, and exothermic—the primary adsorption 
mechanism involved electrostatic interactions with minimal coordination 
effects. Overall, ACDS@Tu shows promise as an effective solution for Pb(II) 
removal from water, offering significant potential for environmental 
remediation applications. 

 

INTRODUCTION   

Water contamination by toxic heavy metals represents a critical global challenge, significantly 
impacting the environment and public health (Algethami, et al., 2022; Naushad, et al., 2020 and 
Alqadami et al., 2020 Alqadami et al., 2020a). Metals such as chromium (Cr), mercury (Hg), cadmium 
(Cd), and lead (Pb) are known for their severe toxicity, even in minimal concentrations (Alqadami et 
al., 2017: Algamdi, et al., 2017; Khan et al., 2019a and Saad et al., 2017). Unlike organic contaminants, 
heavy metals persist in ecosystems without degradation over time, leading to long-lasting 
environmental impacts (Lee et al., 2022 and Ahamad et al., 2020). Once in aquatic systems, these 
metals can bioaccumulate in organisms, posing severe risks to marine life and human health 
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(Alqadami et al., 2020a). Lead (Pb(II)), in particular, poses a heightened threat due to its toxicity and 
tendency to bioaccumulate within food chains (Alqadami et al., 2020b and Khanet al., 2019a. Industrial 
activities—mining, dye production, paper manufacturing, metallurgical processing, battery storage, 
and electroplating—introduce Pb(II) ions into water bodies through wastewater discharges, further 
amplifying the contamination issue (Alsuhybani et al., 2020). Pb(II) has numerous harmful effects on 
human health, including central nervous system dysfunction, kidney damage, and brain damage, even 
at small concentrations. This makes it a severe environmental and public health hazard (Aldawsari 
et al, 2017). The recommended set limit by the World Health Organization (WHO) for lead in drinking 
water is 10 μg/L (Maneechakr and Karnjanakom, 2021) emphasizing the need for effective 
wastewater treatment before distribution (Kariri et al., 2024). 

Researchers have developed several treatment techniques to remove toxic heavy metals from 
wastewater, for example, solvent extraction, electrochemical removal, chemical precipitation, 
coagulation, floatation, reverse osmosis, and ion exchange adsorption (Zhu, et al., 2016; Wang et al., 
2016; Di Palma et al., 2002; Ghasemi, et al., 2014; Matlock et al., 2002; Fu & Wang, 2019; Burke, et al., 
2013 and Naushad, 2014). Among the various technologies, adsorption is widely employed for 
treating wastewater contaminated with Pb(II) ions due to its high effectiveness, simple operation, 
low cost, and minimal secondary pollution. In contrast, other methods are often more expensive and 
may produce secondary pollutants (Majdoubi et al., 2023; Khan et al., 2023; Melhi et al., 2022; 
Algethami et al., 2024). 

Among various adsorbents, activated carbon has garnered significant attention and widespread use 
for heavy metals and dye removal from the water environment. Among various adsorbents, activated 
carbon has garnered considerable attention and widespread use for heavy metals and dye removal 
from the water environment because of its unique properties, including a wide variety of functional 
groups, a large surface area, and an excellent porous structure (Naushad, et al., 2020; Aldawsari et 
al., 2021). Several studies for Pb(II) removal have been carried out using activated carbon derived 
from waste biomass such as pine cone (Momčilović et al., 2011), oak shell biowaste (Adibmehr & 
Faghihian, 2018), sugarcane bagasse (Tao, et al., 2015), hazelnut husks (Imamoglu and Tekir, 2008), 
bamboo (Liu, et al., 2010) coconut shell (Sekar et al., 2004), date palm fiber (Melliti et al., 2023) Since 
biomass-derived adsorbents are both cost-effective and efficient, date seeds were chosen for this 
study due to their widespread availability, low ash content, distinct natural structure, and rich 
lignocellulosic composition. 

However, untreated activated carbon exhibits relatively low adsorption capacity for heavy metals 
because the functional groups involved in metal binding are only present on a limited portion of its 
surface. Many materials such as 1,5-diphenylthiocarbazone (Kazemi, et al., 2016), 3-
mercaptopropyltrimethoxysil-ane (Xia, et al., 2019), A xanthate (Gao et al., 2017), Eriochrome Blue 
Black (Albishri et al., 2017), Fe3O4 (Arul et al., 2023), EDTA [43], and polyethyleneimine (Saleh, et al., 
2017) have been used for the modification of activated carbon to enhancement the adsorption 
efficiency of metal ions from aqueous media. Lv et al. (2018) enhanced bamboo-activated carbon by 
modifying it with ethylene diamine tetraacetic acid, creating a novel adsorbent (BAC@SiO2-EDTA) 
specifically designed for the removal of Pb(II) from water. They found that the adsorption capacity 
of BAC@SiO2-EDTA toward Pb(II) (45.45 mg/g) and Cu(II) (23.45 mg/g) was better than raw 
bamboo activated carbon (Pb(II): 6.85 mg/g, Cu(II): 42.19 mg/g) due to introduced amino groups on 
the BAC@SiO2 (Lv et al., 2018). Thiourea is an organosulfur compound with the formula NH₂CSNH₂. 
Thiourea contains sulfide and nitrogen atoms in its structure, which are used to bind heavy metals 
(Cai, et al., 2019 and El-Bahy et al., 2003). The introduction of amine and thiol groups on the activated 
carbon well improves the removal efficiency of lead (II) ions due to their high coordination ability 
with lead (II) ions. 

This study aims to develop a novel, low-cost, and efficient thiourea-modified date seed activated 
carbon (ACDS@Tu) using a simple method and to evaluate its effectiveness in removing Pb(II) from 
aqueous solutions. The activated carbon was produced from date seeds through chemical activation 
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with KOH, followed by modification with thiourea. This resulted in a novel adsorbent with a high 
Pb(II) ion adsorption capacity. FTIR, XRD, TGA, EDX, SEM, BET, and zeta potential were used to study 
and characterize the ACDS@Tu composite. The influence of Pb(II) ion concentration, pH value, 
adsorbent dosage, temperature, and contact time on the Pb(II) removal efficiency was studied. The 
results revealed that introducing amine and thiol groups on date seed-activated carbon effectively 
removed Pb(II) ions from the aqueous media. Additionally, the adsorption mechanism of Pb(II) on 
ACDS@Tu composite was analyzed using kinetic, isotherm, and thermodynamic data.  

MATERIALS AND METHODS 

1. Materials 

Thiourea, Lead nitrate Pb(NO3)2, anhydrous dichloromethane (DCM), Ethanol (EtOH), and 
dimethylformamide (DMF) were obtained from Sigma Aldrich. Nitric acid (70%) and Hydrochloric 
acid (37%) were obtained from Merck, Germany. Sodium hydroxide (98%) was supplied by BDH, 
England 

Instrumentals  

The surface morphology of the ACDS and ACDS@Tu composite was investigated using a scanning 
electron microscope (SEM) from Hitachi Ltd., Tokyo, Japan. The BET of the ACDS and ACDS@Tu 
composite was measured using a micrometric Tristar II 3020 surface area. The fictional groups of 
ACDS, ACDS@Tu, and Pb(II) loaded ACDS@Tu composite was determined by FTIR (Thermo Nicolet 
iS10 spectrometer). A TGA -51 Shimadzu TGA analyser obtained the thermal stability of the 
ACDS@Tu composite. 

Methods  

Preparation of ACDS@Tu composite 

Preparation of date stones porous activated carbon 

The date stones for this study were sourced from Bisha, Saudi Arabia, and underwent a series of 
preparation steps. Initially, the stones were washed with distilled water, dried in an oven at 100°C 
for 24 hours, and then ground into a fine powder. A mixture of 20 mg of this powdered date stone 
and 80 g of KOH (1:4 weight ratio) was created, combined with 100 mL of distilled water, and stirred 
at 70°C until water evaporation was complete.  

This preparation was further dried at 110°C for 24 hours. Following drying, the sample was 
carbonized in a tubular electric furnace at 400°C for three hours under a nitrogen flow of 75 mL/min. 
The resulting KOH-activated carbon was treated with 1N HCl, rinsed with warm distilled water to 
eliminate any acid traces, dried at 110°C for another 24 hours, and finally sieved to 212 μm particle 
size. This activated carbon was then used for further textural and chemical analyses (Fig. 1). 
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Fig. 1. Scheme illustrate the prepared ACDS@Tu composite. 

Synthesis of activated carbon modified thiourea  

Porous activated carbon modified thiourea was synthesized according to three steps: in the first step, 
4 g of activated carbon was put into 250 mL HNO3 solution (32.5%) under the magnetic stirring for 
24 h. at 60 °C, then the AC-COOH was filtered, washed with D.W., then oven-dried at 80 °C for 24 h. In 
the second step, 3 g of AC-COOH with 250 mL of a 4:1 mixture of DCM and SOCl2 was refluxed at 35 
°C in an N2 gas for 24 h. The resultant AC-COCl was dried via rotary evaporation at 40° C. Then the 
AC-COCl was washed with ethanol and D.W. and dried overnight in the oven at 60 °C. In the third 
step, 2 g of thiourea was dissolved in 50 ml of DMF, and 2 g of AC-COCl was added to the solution. 
After that, the mixture was stirred at 60 °C for 24 h. The obtained ACDS@Tu was rinsed with acetone 
and dried in air at 100 °C (Fig. 2). 

 

Fig. 2. FTIR spectra of ACDS, ACDS@Tu, and Pb(II) loaded- ACDS@Tu composite. 

Batch method adsorption studies 

Batch adsorption experiments were carried out to determine the optimal Pb(II) removal conditions 
using the ACDS@Tu composite. Parameters such as temperature (25–45°C), pH (2–7), adsorbent 
dose (0.005–0.02 g), initial Pb(II) concentration (50–650 mg/L), and contact time (10–400 min) were 
varied to assess their effects on adsorption. In each experiment, 50 mL of a Pb(II) solution (50 mg/L) 
at approximately pH 6 was placed in a 250 mL conical flask and shaken at 100 rpm for 360 minutes 
at room temperature. Afterward, the ACDS@Tu composite was separated by centrifugation, and the 
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remaining Pb(II) concentration was measured using ICP-OES. Each test was conducted in triplicate 
to ensure accuracy, with adsorption capacities calculated from the difference between initial and final 
concentrations (Eq. 1). The Pb(II) removal efficiency was determined using Eq. 2.  

𝑞𝑡 =
(𝐶𝑜 − 𝐶𝑒) ∗ 𝑉

𝑚
                                                                                                                                     (1) 

𝑅𝑒𝑚𝑜𝑣𝑎𝑙 (%) =
𝐶𝑜 − 𝐶𝑒

𝐶𝑜
× 100                                                                                                     (2) 

In this context qt (mg/g) indicates the quantity of Pb(II) ions adsorbed onto the ACDS@Tu composite 
at time t, while C0 and Ce (mg/L) represents the initial and equilibrium concentrations of Pb(II), in 
the solution respectively. Here, m is the mass of the ACDS@Tu composite (g), and V (L) stands for the 
volume of the solution (L). 

RESULTS  

Characterization of ACDS@Tu 

The results were tabulated in Table 1. Declared the Nonlinear kinetics model parameters for Pb(II) 

adsorption on ACDS@Tu composite. While, Table 2. Nonlinear isotherm model parameters for Pb(II) 

adsorption on ACDS@Tu composite. Table 3. Comparison of Pb(II) adsorption on various activated carbon 

adsorbents. Fig. 3 shows the morphology of the porous activated carbon (ACDS) and ACDS@Tu 
composite. The SEM image for ACDS exhibits high porosity with a uniform pores structure (Fig. 3a). 
After modification of ACDS with Tu, the SEM images show a heterogeneous rough surface with 
numerous pores of different sizes, confirming the incorporation of thiourea on the activated carbon 
surface (Fig. 3b). 

 Fig. 4a displays the thermal stability of the ACDS@Tu composite. The TGA curve of the ACDS@Tu 
composite can be segmented into three distinct stages. The first stage shows an 8% weight loss at 
~100 °C, attributed to releasing physically adsorbed water. In the second stage, a weight loss of 
approximately ~16% was observed between 100 and 350°C, attributed to the thermal degradation 
of thiourea (Dai et al., 2019). In the third stage, a ~72.7% weight loss occurred between 350 °C and 
800 °C due to the devolatilization of hemicellulose, cellulose, and lignin. The TGA curve also shows 
that the total weight loss for the ACDS@Tu composite was 96.7% in the 33–800°C range.  
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Table 1. Nonlinear kinetics model parameters for Pb(II) adsorption on ACDS@Tu composite. 

Co 
(mg/L) 

qe,exp. 

(mg/g) 
 Pseudo-first-order  Pseudo-second-order  Elovich 
 qe1, cal. 

(mg/g) 
K1 

(1/min) 
R2  qe2, cal. 

(mg/g) 
K2  

(g/mg-
min) 

R2  α (mg/g 
min) 

Β 
(mg/g) 

R2 

50 95.84  91.42 0.065 0.9534  96.82 0.0011 0.99159  143.06 0.086 0.99448 

Table 2. Nonlinear isotherm model parameters for Pb(II) adsorption on ACDS@Tu composite 

Table 3. Comparison of Pb(II) adsorption on various activated carbon adsorbents. 

Adsorbent Prameters Conditions qm(mg/g) Ref. 

EDTA-functionalized bamboo activated 
carbon 

pH-5.3,  T- 25 oC,  time- 24 h, Co- 50–100 mg/L, dose- 0.8g/L 123.45  [43] 

Modified AC from sugarcane bagasse pH-5,  T- 25 oC,  time- 120 min, Co- 200–600 mg/L, dose- 0.1 g 212.13  [65]  

Porous activated carbon pH-5.5,  T- 25 oC,  time- 120 min, Co- 25–300 mg/L, dose- 7.5 g/L 207.9  [66] 

Amine and thiol modified activated 
carbon 

pH-5.5,  T- 25 oC,  time- 60 min, Co- 10–700 mg/L, dose- 0.01 g  310.9  [67] 

Polyaniline@activated carbon pH-4,  T- 25 oC,  time- 90 min, Co- 20 mg/L, dose- 1 g 6.81 [68] 

Activated carbon derived from date 
press cake 

pH-6,  T- 25 oC,  time- 45 min, Co- 5–150 mg/L, dose- 1 g/L 101.3 [69] 

ACDS@Tu composite  pH- 6,  T- 25 oC,  time- 280 min, Co- 50–650 mg/L, dose- 0.01 g 503.27 This 
study 

Temperature 
(K) 

qe,exp. 

(mg/g) 
Langmuir  Freundlich  Dubinin-R 

qm, 
(mg/g) 

KL 

(L/mg) 
RL R2 Kf, (mg/g) 

(L/mg)1/n 
n R2 qs, mg/g  KD-R (mol2  

KJ-2) 
E (kJ mol-

1) 
R2 

298 K 493.34 503.27 0.1023 0.164 0.9972 165.37 5.06 0.9269 461.48 18.097 0.166 0.91 
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Fig. 3. SEM images of ACDS (a) and ACDS@Tu composite (b). 

Fig. 4 b&c shows the nitrogen adsorption-desorption isotherms on ACDS and ACDS@Tu composite. 
The specific surface and total pore volume of ACDS (SBET: 889 m2/g, Vtot: 0.158 cm3/g) decreased to 
155 m2/g and 0.03 cm3/g, respectively. This is ascribed to the incorporation of thiourea onto the 
ACDS surface. The pore radii of ACDS and ACDS@Tu composites were 1.576 and 1.575 nm, 
respectively. These results confirmed that the pore size of the ACDS and ACDS@Tu composite are 
consistent with the pore size range of microporous materials (< 2 nm). 

 

Fig. 4. TGA curve of ACDS@Tu composite (a), N2 adsorption/desorption isotherms for ACDS (b) and 

ACDS@Tu composite (b). 

Adsorption performance of ACDS@Tu composite 

pH Effect  

The pH plays is vital in determining the adsorption efficiency of Pb(II) onto the ACDS@Tu composite. 
As the pH increased from 2 to 6, the adsorption capacity gradually increased, reaching a maximum of 
95.84 mg/g at pH 6 (Fig 5a). This improvement is due to reduced competition with H⁺ ions as the pH 
becomes more alkaline. However, the adsorption capacity decreased when the pH exceeded 6, likely 
because Pb(II) precipitates as Pb(OH)₂.  
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Adsorbent dose Effect 

The effect of adsorbent mass on Pb(II) ion removal using the ACDS@Tu composite was studied in the 
range of 0.005 to 0.02 g under constant conditions (T: 298 K, Co: 50 mg/L, agitation speed: 100 rpm, 
time: 24 h) and the result shown in Fig 5b. As the adsorbent dose increased from 0.005 to 0.01 g, the 
Pb(II) removal efficiency improved from 49.80% to 95.78%. This improvement is attributed to the 
increased number of available adsorption sites. However, after 0.01 g, further increases in the 
adsorbent dose led to decreased adsorption capacity because the Pb(II) ions became limited, leaving 
many adsorption sites unoccupied. Therefore, 0.01 g was selected as the optimal adsorbent dose for 
this study. 

 

Fig. 5. Influence of initial pH (a) and adsorbent dosage (b) on adsorption of Pb(II) on ACDS@Tu 

composite. 

Contact Time Effect 

The influence of contact time on the Pb(II) adsorption on ACDS@Tu composite was investigated from 
10 –400 min under the following conditions (Co: 50 mg/L, pH: 6.0, T: 298 K, m: 0.01 g, speed: 100 
rpm), as shown in Fig. 6a. The results indicated a rapid Pb(II) ions removal within the first 10 min 
(53.56%), followed by a gradual increase until equilibrium was achieved at 280 min with removal of 
95.84%. After 280 min, the adsorption capacity and removal efficiency of Pb(II) levels remained 
constant. This is because the active adsorption sites on the ACDS@Tu composite are saturated with 
Pb(II) ions. The highest percentage of removal was 95.84 %. Therefore, an equilibrium time of 280 
min was selected for the following experiments. 

 

Fig. 6. Influence of contact time (a) and initial concentration (b), and temperature (c) on adsorption of 

Pb(II) on ACDS@Tu composite 
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Initial concentration and temperature Effect 

The effect of initial Pb(II) concentration on adsorption capacity was examined in the range of 50 to 
650 mg/L under the following conditions [(m: 0.01 g, pH: 6.0, T: 298 K, time: 280 min, agitation speed: 
100 rpm,), as presented in Fig. 6b. The finding revealed that the adsorption capacity of ACDS@Tu 
composite for Pb(II) ions increased from 85.49 to 439.14 mg/g with increasing amount of Pb(II) from 
50 to 300 min. Then, it slightly increases due to the saturation of the adsorption site with Pb(II) ions. 
The initial increase in capacity with higher Pb(II) concentrations can be attributed to enhanced Pb(II) 
mass transfer from the solution to the surface of the ACDS@Tu composite.  In addition, as the 
temperature raised from 25°C to 45°C, the amount of Pb(II) adsorbed on ACDS@Tu composite 
decreased from 95.84 to 83.56 mg/g at 50 mg/L, as shown in Fig. 6c, suggesting that the Pb(II) 
adsorption is exothermic.  

Adsorption modeling  

Adsorption isotherms 

Table 2 provides the isotherm parameters for Pb(II) adsorption on the ACDS@Tu composite, and Fig. 
7b illustrates the fitting results. Based on the R² values in Table 2, the Langmuir model (R² = 0.9972) 
offers a superior fit compared to the Freundlich (R² = 0.92698) and Dubinin–Radushkevich (R² = 
0.91) models, suggesting that the adsorption process on ACDS@Tu composite surfaces is 
homogeneous and follows a monolayer chemisorption mechanism. The composite’s maximum 
adsorption capacity (qm) was 503.27 mg/g. Additionally, the RL value in Table 2 indicates favorable 
Pb(II) adsorption on ACDS@Tu, as it is less than 1.0. This study also compares the adsorption 
capacity of the ACDS@Tu composite with other adsorbents using the Langmuir isotherm model, as 
detailed in Table 3. The comparison highlights that the ACDS@Tu composite outperforms other 
adsorbents like EDTA-functionalized bamboo activated carbon (123.45 mg/g), modified activated 
carbon from sugarcane bagasse (212.13 mg/g). 

 

Fig. 7. Isotherm adsorption curves (a) and Kinetic adsorption isotherms (b) of Pb(II) on ACDS@Tu 

composite. 

Adsorption thermodynamics 

The plot of ln Kc Vs 1/T is shown in Fig. 8, and Table 4 summarizes the thermodynamic values for 
Pb(II) adsorption on the ACDS@Tu composite.  

Table 3. Thermodynamic parameters for Pb(II) adsorption on ACDS@Tu composite 

Concentration  ΔH° 
(kJ/mol) 

ΔS° 
(J/mol.K) 

(-)ΔG° (kJ/mol) 

294 K 298 K 303 K 

50 -3.67 -6.88 -1.62 -1.49 -1.41 
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Fig. 8. Plot of lnK vs. 1/T for thermodynamic parameters calculation 

 

Fig. 9. Mechanism adsorption of Pb 

DISCUSSION 

The FTIR spectra of ACDS, ACDS@Tu, and Pb(II)-loaded ACDS@Tu (Fig. 2) reveal significant 
differences in surface functional groups. In ACDS, characteristic peaks were detected at 2917 and 
2845 cm–1 for C–H stretching (asymmetry and symmetry), 1707 cm–1 for C=O stretching, 1582 cm–1 
for C=C in the aromatic ring, and 1442 cm–1 for aliphatic C–H bending, indicating the presence of 
lignocellulosic components and functional groups such as alcohols, ketones, aldehydes, and aromatic 
compounds (Elnour, et al., 2019).Upon modification with thiourea, new peaks appeared in ACDS@Tu 
at 3175 and 3371 cm–1, associated with NH₂ overlapping with OH, and at 1655 cm–1, corresponding 
to the amide (–CONH) stretching. Additionally, peaks at 752 and 620 cm–1 indicated C=S asymmetric 
and symmetric stretching, confirming successful thiourea incorporation (Singh et al., 2020). The peak 
at 1615 cm–1 is attributed to NH bending (Naushad et al., 2019 and Melhi et al., 2024) and peaks at 
1383, 1251, and 1094 cm⁻¹ are linked to C–O and C–N stretching (Mariappan et al., 2011). Several 
characteristic bonds diminished or disappeared after Pb(II) adsorption, suggesting Pb(II) binding. 
The 3175 and 3371 cm–1 peaks for NH/OH stretching showed reduced intensity. Additionally, peaks 
at 1655 and 1615 cm⁻¹, related to amide and NH₂ bending, decreased and shifted to 1538 cm⁻¹, 
indicating electrostatic interactions between Pb(II) and the amino and hydroxyl groups of ACDS@Tu. 
The disappearance of C=S, C–O, and C–N bands after Pb(II) adsorption confirms that -NH₂, -CONH, 
and -OH groups in ACDS@Tu actively participate in Pb(II) uptake 

The first stage shows an 8% weight loss at ~100 °C, attributed to the release of physically adsorbed 
water. In the second stage, a weight loss of approximately ~16% was observed between 100 and 
350°C, attributed to the thermal degradation of thiourea (Dai et al., 2019). In the third stage, a 
~72.7% weight loss occurred between 350 °C and 800 °C due to the devolatilization of hemicellulose, 
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cellulose, and lignin. The TGA curve also shows that the total weight loss for the ACDS@Tu composite 
was 96.7% in the 33–800°C range. 

The improvement is due to reduced competition with H⁺ ions as the pH becomes more alkaline. 
However, the adsorption capacity decreased when the pH exceeded 6, likely because Pb(II) 
precipitates as Pb(OH)₂. As a result, pH 6 was chosen as the optimal condition for the subsequent 
experiments. Similar findings were observed in the removal of Pb(II) using pine cone adsorbents (Xu 
et al., 2021 and Fu et al, 2019).  A similar result was observed for the influence of pH on the 
elimination of Pb(II) on pine cone (Selvi and Balasubramaniyan, 2024). 

The effect of initial Pb(II) concentration on adsorption capacity was examined in the range of 50 to 
650 mg/L under the following conditions [(m: 0.01 g, pH: 6.0, T: 298 K, time: 280 min, agitation speed: 
100 rpm,), as presented in Fig. 6b. The finding revealed that the adsorption capacity of ACDS@Tu 
composite for Pb(II) ions increased from 85.49 to 439.14 mg/g with increasing amount of Pb(II) from 
50 to 300 min. Then, it slightly increases due to the saturation of the adsorption site with Pb(II) ions. 
The initial increase in capacity with higher Pb(II) concentrations can be attributed to enhanced Pb(II) 
mass transfer from the solution to the surface of the ACDS@Tu composite.  In addition, as the 
temperature raised from 25°C to 45°C, the amount of Pb(II) adsorbed on ACDS@Tu composite 
decreased from 95.84 to 83.56 mg/g at 50 mg/L, as shown in Fig. 6c, suggesting that the Pb(II) 
adsorption is exothermic. The decrease in adsorption capacity may be due to weak attraction 
between Pb(II) ions and ACDS@Tu composite at higher temperatures. Similar trends were reported 
by Bilal et al., (2021) for the adsorption of Pb(II) on activated carbon and activated carbon 
mesoporous adsorbent (Neolak et al. 2021), respectively.  

To investigate the adsorption kinetics mechanisms for Pb(II) on the ACDS@Tu composite, three 
kinetic models were analyzed: the pseudo-first-order (PFO) model (Lagergren, 1898), the pseudo-
second-order (PSO) model (Wingenfelder et al., 2005), and the Elovich model (George, and Roginsky, 
1934). The nonlinear equations for these models are provided in the supplementary material (Text 
S1). Table 1 presents the kinetic parameters for Pb(II) adsorption on the ACDS@Tu composite, while 
the fitting results are shown in Fig. 7a. Findings indicate that the PSO and Elovich models better 
predict Pb(II) adsorption on the ACDS@Tu composite, achieving higher R² values of 0.99159 
compared to the PFO model (R² = 0.9534). Additionally, the calculated qe,cal (96.82 mg/g) by PSO  
agree with experimental values (qe,exp) (95.84 mg/g), suggesting that Pb(II) adsorption involves 
chemical adsorption via electron sharing between the ACDS@Tu composite and Pb(II) ions (Yin, et 
al., 2019). Similar observations for Pb(II) removal have been reported by Bilal et al. using activated 
carbon.  

To explore the mechanisms of Pb(II) adsorption on the ACDS@Tu composite, three isotherm 
models—Langmuir (Wallis & Dollard, 2008), Freundlich, and Dubinin–Radushkevich (Dubinin, 
1947) were applied. The equations for these isotherm models are available in the supplementary 
material (Text S2). The composite’s maximum adsorption capacity (qm) was 503.27 mg/g. 
Additionally, the RL value in Table 2 indicates favorable Pb(II) adsorption on ACDS@Tu, as it is less 
than 1.0. This study also compares the adsorption capacity of the ACDS@Tu composite with other 
adsorbents using the Langmuir isotherm model, as detailed in Table 3. The comparison highlights 
that the ACDS@Tu composite outperforms other adsorbents like EDTA-functionalized bamboo 
activated carbon (123.45 mg/g) (Liu et al., 2018), modified activated carbon from sugarcane bagasse 
(212.13 mg/g) (Somyanonthanakun et al., 2023), porous carbon (207.9 mg/g) (El-Wakeel, et al., 
2023), AT-MAC (310.9 mg/g) (Waly et al., 2021), Polyaniline@activated carbon (6.81 mg/g) [68], 
and activated carbon derived from date press cake (101.3 mg/g) (Heidarinejad et al., 2019). These 
findings underscore the ACDS@Tu composite’s high efficiency in removing Pb(II) from aqueous 
environments. 
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To assess the feasibility and spontaneity of Pb(II) adsorption onto the ACDS@Tu composite, 
thermodynamic parameters—entropy (ΔS° in J/mol/K), Gibbs free energy (ΔG° in kJ/mol), and 
enthalpy (ΔH° in kJ/mol) were calculated using the equations provided below. The values for 
enthalpy and entropy were obtained from the slope and intercept of the van’t Hoff plot, respectively. 

          lnKc=
R

S

RT

H 00 



                                                                                                        

∆𝐺° = −𝑅𝑇 𝑙𝑛𝐾𝑐                                                                                                           

 

where Kc represents the thermodynamic equilibrium constant, defined as the ratio of qe to Ce. The 
plot of ln Kc Vs 1/T is shown in Fig. 8, and Table 4 summarizes the thermodynamic values for Pb(II) 
adsorption on the ACDS@Tu composite. The negative enthalpy value (-3.67 kJ/mol) indicates that 
the removal of Pb(II) on the composite surface is an exothermic process, suggesting a physical 
adsorption mechanism (physisorption) (Shi et al., 2021). The negative ΔG° values (−1.62 and −1.41 
kJ/mol) demonstrate that Pb(II) adsorption on the ACDS@Tu composite is spontaneous. 
Furthermore, as the ΔG° values decrease with rising temperature from 298 to 328 K, it is evident that 
lower temperatures (298 K) enhance Pb(II) adsorption on the composite. The negative ΔS° value 
(−6.88 J/mol.K) reflects a reduction in disorder at the solid-liquid interface. Similar trends in Pb(II) 
removal have been reported by Alqadami et al. (2020a) with silico-manganese fume-impregnated 
cryogenic alginate beads (Alqadami et al., 2020b and Alsuhybani et al. (2020) using 
Fe3O4@BDC@AGPA. 

CONCLUSION 

Thiourea-modified activated carbon derived from date stones (ACDS@Tu) was synthesized and 
demonstrated remarkable efficiency in adsorbing Pb(II) ions from water. FTIR analysis confirmed 
the successful incorporation of thiourea onto the activated carbon framework through an amidation 
reaction. ACDS@Tu exhibited a specific surface area of 889 m²/g and a pore volume of 0.158 cm³/g. 
Investigations revealed that factors such as contact time, temperature, pH, initial Pb(II) 
concentration, and adsorbent dosage all positively impacted adsorption performance. Under optimal 
conditions (pH 6.0, Pb(II) concentration of 50 mg/L, temperature of 298 K, adsorbent dose of 0.01 g, 
and agitation at 100 rpm), Pb(II) removal reached 95.84%. The adsorption kinetics followed the PSO 
model, and equilibrium data conformed to the Langmuir isotherm, indicating a maximum adsorption 
capacity of 503.27 mg/g. Thermodynamic studies showed the process to be exothermic. The 
adsorption mechanism primarily involved electrostatic interactions and minimal chemisorption, 
making ACDS@Tu a cost-effective, sustainable, and highly effective adsorbent for Pb(II) removal 
from water and wastewater. 
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