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In the present study, we define the common fixed Point theorem for a hybrid 
generalized multi-valued contraction mapping. Our findings complement, 
expand upon, harmonize with, and generalize a number of widely-used 
fixed point theorems published by several authors. 

 

INTRODUCTION   

Markin [1] and Nadler [2] started the study of fixed points of multl-valued mappings using the 
Hausdorff metric. Later, a number of generalizations were obtained, among others, by Ciric [3], Khan 
[4], Kubiak [5], Reich [6], Smithson [7], and Uegrzyk [8]. The multl-valued contraction principle states 
that a multi-valued contraction mapping on a complete metric space having values in the set of all 
closed and bounded subsets of the metric space possesses a fixed point. However, Mukherjee [9], 
Naimpally et al. [10], Rhoades et al. [1I], and Singh et al. [12] have lately examined hybrid 
contractions, i.e., contractive conditions involving multi-valued and single-valued mappings. The 
focus of this work is on a broad category of conditions that involve two multi-valued mappings and a 
single-valued mapping. We show fixed point and coincidence theorems that enhance, broaden, and 
consolidate many established fixed point and coincidence theorems. We have compared a few 
contractive circumstances at the conclusion. 

A fascinating field of study is the existence and uniqueness of solutions to functional equations and 
nonlinear matrix equations. For the existence of the aforementioned equations, metric fixed-point 
theory offers the most advantageous and effective methods. The writers of [13–18] worked with 
matrix equations and provided positive definite solutions to show the existence and uniqueness of 
the answers. 
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In several fields, including ladder networks [19, 20], control theory [20, 21], and dynamic 
programming [22–25], matrix equations and functional equations are often generated. Banach [26] 
has achieved a notable and prosperous outcome, which was subsequently dubbed the Banach 
contraction principle (BCP). There are several spaces in which the Banach principle has been 
extended. The Nadler contraction principle (NCP), which applies the Hausdorff metric to set-valued 
mapping, was further developed and expanded upon by Nadler [27] in 1969. 

 Subsequently, the BCP was generalized in hundreds of publications published in literature. Very 
recently, certain writers (see [28–30] and the references therein) demonstrated the contraction 
principle in metric in controlled metric type spaces where the triangle inequality possesses control 
functions. Aamri and Moutawakil [31] demonstrate common fixed point solutions under stringent 
contractive circumstances and defend the (E.A) property for self-mappings, which encompassed the 
class of compatible and no compatible mappings. In addition to establishing fixed point and 
coincident point findings with hybrid tight contractions, Kamran [32] illustrated the (E.A) property 
for hybrid pairs. New common fixed point theorems utilizing hybrid contractive conditions were 
published by Liu et al. [33] along with the introduction of the common (E.A) property for hybrid 
pairings of single and multivalued mappings. The concept of the common limit range (CLR) property 
for single-valued mappings was introduced by Sintunavarat and Kumam [34], who demonstrated its 
superiority over the property (E.A).  

For a hybrid pair of mappings, Imdad et al. [35] developed the common limit range property and 
showed fixed point results in the symmetric (semimetric) spaces. The ideas were transformed into 
multivalued mappings by Abbas et al. [25], who also developed linked fixed point and coincidence 
point theorems that connect hybrid pairs of mappings that meet extended contractive requirements. 
For hybrid (pair) coupled maps, Deshpande and Handa [36, 37] defined (E.A) property and 
occasional w-compatibility. They also established common (E.A) property for two hybrid c on 
traction termed F-contraction.  

The F-contraction is a brand-new contraction that Wardowski [38] presented in 2012. In contrast to 
the established findings of the literature, Wardowski applied the Banach contraction principle (BCP) 
in a novel method. Sgroi and Vetro [25] investigated multivalued F-contractions in this light and 
talked about how they may be used for certain integral and functional problems.  

Newly, Nashine et al. [39] presented generalized (f, g)-contractions and examined common fixed 
point outcomes for a hybrid pair under a common limit range property. Their research has 
implications to Volterra integral inclusion and a specific system of functional equations. Several 
writers have examined coupled fixed points in various type metric spaces [40–42] for multiple type 
contraction mappings. 

In 1988 and 1989 Kaneko and Sessa were introduced the following definitions: 

1. Weakly commuting: 

Let (𝜉, 𝜌) be a metric space and ϕ: ξ → LR(ξ)(LR(ξ) = {V:V is the set of all non-empty  closed 

and bounded subset of 𝜉 })  and 𝜓: 𝜉 → 𝜉 are mappings. A set {ϕ, 𝜓} is said to be  weakly 

commuting if ψ ϕ a ∈ LR (ξ) and F (ϕ ψ𝑎𝑙, ψ ϕ𝑎𝑙 ) → 0 , 

 whenever {𝑎𝑙} is a sequence in 𝜉 such that ϕ𝑎𝑙 → A ∈ LR(𝜉) and ψ𝑎𝑙 → 𝑢 ∈ A for each 

 𝑎 ∈ 𝜉. 

2. Compatible: 

 Let (𝜉, 𝜌) be a metric space and ϕ: ξ → LR(ξ) and ψ: ξ → ξ are two mappings. A set {ϕ, ξ} is 

 said to be compatible if and only if  
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 ψϕ 𝑎 ∈ LR(ξ) and F(ϕ ψ𝑎𝑙, ψ ϕ𝑎𝑙 ) → 0, 

 whenever {𝑎𝑙} is a sequence in 𝜉 such that ϕ𝑎𝑙 → A ∈ LR(𝜉) and ψ𝑎𝑙 → 𝑥 ∈ A for each 

 𝑎 ∈ 𝜉. 

 In this paper we extend the great work of author [45], 

Theorem 1: Let (𝜉, 𝜌) be a complete metric space and ϕ, ψ: 𝜉 → LR(𝜉) and ψ: 𝜉 → 𝜉 such that  

F(ϕ𝑎, ϕ1𝑎) ≤
𝛿[𝜎(ϕ𝑎,ψ𝑏)]2+[𝜎(ϕ1𝑏,ψ𝑎)]2

𝜎(ϕ𝑎,ψ𝑏)+𝜎(ϕ1𝑏,ψ𝑎)
+ 𝜃𝛿(ψ𝑎, ψ𝑏) holds for all 𝑎, 𝑏 ∈ 𝜉, 𝑎 ≠ 𝑏, ϕ𝑎 ≠

ϕ𝑏, ϕ1𝑎, ≠ ϕ1𝑏;  

∆, 𝜃 ≥ 0, 2∆ + 𝜃 < 1, Whenever 𝜎(ϕ𝑎, ψ𝑏) + 𝜎(ϕ1𝑏, ψ𝑎) ≠ 0 and F(ϕ𝑎, ϕ1𝑎) = 0 Whenever 

𝜎(ϕ𝑎, ψ𝑏) + (ϕ1𝑏, ψ𝑎) = 0. 

Further 

 (i) ϕ(𝜉) ∨ ϕ1(𝜉) ≤ ψ(𝜉) 

 (ii) {ϕ, ψ} and {ϕ1, ψ } are weakly commuting 

 (iii) ψ is continuous at 𝜉, then there exists a point r in 𝜉 such that 𝑟 = ψr ∈ ϕr ∩ ϕ1𝑟. 

Proof: Let us assume that 

  휀 =
∆+𝜗

1−∆
 

Let 𝑎0 ∈ 𝜉 and 𝑏1 be arbitrary point ϕ𝑎0. 

Also, let 𝑎1 ∈ 𝜉 such that 𝑏1 = ψ𝑎2 this is possible as ϕ𝜉 ⊆ ψ𝜉. 

Now, using[28], we obtain 𝑏2 = ∈ ϕ1𝑎1 such that 𝜌(𝑏1, 𝑏2) ≤ 𝐹(ϕ𝑎0, ψ𝑎1) − 휀.
∆−1

∆+1
 

We choose 𝑎2 ∈ 𝜉 such that 𝑏2 = ψ𝑎2 as ϕ1𝜉 ⊆ ψ𝜉. 

Then we find 𝑏3 ∈ ϕ𝑎2 such that 𝜌(𝑏2, 𝑏3) ≤ F(ϕ𝑎2, ψ𝑎1) +
∆−1

∆+1
(−ε2) 

In the same way, we select 

   𝑏2𝑙 = ψ𝑎2𝑙    ∈ ϕ1𝑎2𝑙−1 and          

  𝑏2𝑙+1 = ψ𝑎2𝑙+1    ∈ ϕ𝑎2𝑙 such that                                                                                    

          𝜌(𝑏2𝑙+1, 𝑏2𝑙+2) ≤ F(ϕ𝑎2𝑙, ϕ1𝑎2𝑙−1) −
∆−1

∆+1
(ε2𝑙) 

Then having selected𝑏2𝑙+1, take a point 𝑏2𝑙+1 = ψ𝑎2𝑙+1  ∈ ϕ1𝑎2𝑙+1 such that          

𝜌(𝑏2𝑙+1, 𝑏2𝑙+2) ≤ F(ϕ1𝑎2𝑙, ϕ1𝑎2𝑙+1) −
∆−1

∆+1
(ε2𝑙+1) 

Hence for𝑙 ≥ 1, we have 

𝜌(𝑏2𝑙, 𝑏2𝑙+1) ≤ F(ϕ𝑎2𝑙, ϕ1𝑎2𝑙−1) −
∆−1

∆+1
ε----------------(1) 

≤ ε
𝜎[(ψ𝑎2𝑙, ϕ1𝑎2𝑙−1)]2 + 𝜎[(ψ𝑎2𝑙−1, ϕ1𝑎2𝑙)]2

σ(ψ𝑎2𝑙, ϕ1𝑎2𝑙−1) + 𝜎(ψ𝑎2𝑙−1, ϕ𝑎2𝑙)
+ 𝜃𝜌(ψ𝑎2𝑙−1, ψ𝑎2𝑙) −

∆ − 1

∆ + 1
ε2𝑙 

≤ εσ[(ψ𝑎2𝑙, ϕ1𝑎2𝑙−1) + 𝜎(ψ𝑎2𝑙−1, ϕ𝑎2𝑙)] + 𝜃𝜌(ψ𝑎2𝑙−1, ψ𝑎2𝑙) −
∆ − 1

∆ + 1
ε2𝑙             
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i.e. 𝜌(𝑏2𝑙, 𝑏2𝑙+1) ≤
∆+𝜗

∆+1
 𝜌(𝑏2𝑙, 𝑏2𝑙−1) + ε2𝑙 --------------(2)                                                           =

ε𝜌(𝑏2𝑙, 𝑏2𝑙−1) +
ε2𝑙

∆+1
 

Similarly, we can show that 

 𝜌(𝑏2𝑙, 𝑏2𝑙−1) ≤ ε𝜌(𝑏2𝑙−1, 𝑏2𝑙−2) +
ε2𝑙−1

∆+1
 -----------------(3) 

Combining equations (2) and (3), we have 

𝜌(𝑏𝑙+1, 𝑏𝑙+2) ≤ ε2𝜌(𝑏𝑙, 𝑏𝑙−1) +
2ε𝑙+1

∆ + 1
≤ ⋯ ≤ ε𝑙𝜌(𝑏1, 𝑏2) +

𝑙. ε𝑙+1

1 − ∆
                          

⇒ {𝑏𝑙} = {ψ𝑎𝑙} Is a Cauchy sequence and by definition it converges to a point r in 𝜉. 

Also, since ψ is a continuous mapping, {ψψ𝑎𝑙} converges to a point r in𝜉. 

By definition (1), we haveψϕ𝑎2𝑙 ∈ LR(𝜉),𝑎2𝑙 ∈ 𝜉, it follows that 

 F(ϕψ𝑎2𝑙, ψϕ𝑎2𝑙) ≤ 𝜎(ϕ𝑎2𝑙, ψ𝑎2𝑙) ≤ 𝜌(𝑏2𝑙+1, 𝑏2𝑙) → 0 as 𝑙 → ∞ 

But  

𝜎(ψr, ϕψ𝑎2𝑙) → 0 as𝑙 → ∞. 

So, 𝜎(ψr, ϕψ𝑎2𝑙) → 0 as𝑙 → ∞. 

Again, by using definition, 

𝜎(ψr, ϕψ𝑎2𝑙) → 0 as 𝑙 → ∞ 

Let𝜎(ψr, ϕr) ≤ 𝜎(ψr, ϕ1ψ𝑎2𝑙−1) + F(ϕ1ψ𝑎2𝑙−1, ϕr) ≤ 𝜎(ψr, ϕ1ψ𝑎2𝑙−1) + ∆. 

𝜎[(ϕr, ψψ𝑎2𝑟−1)]2 + [𝜎(ϕ1, ψ𝑎2𝑟−1, ψr)]2

𝜎(ϕr, ψψ𝑎2𝑟−1) + 𝜎(ϕ1, ψ𝑎2𝑟−1, ψr)
+ 𝜃𝜌(ψψ𝑎2𝑟−1, ψr) 

Letting𝑙 → ∞, then         

 𝜎(ψr, ϕr) ≤ εσ(ψr, ϕr) 

Hence, ψr ∈ ϕr. 

Similarly, one can easily show that ψr ∈ ϕ1𝑟 and therefor; 

 𝜌(ψ𝑎2𝑟, ψr) ≤ F(ϕ1ψ𝑎2𝑙−1, ϕr) 

≤ ε
[𝜎(ψ𝑎2𝑙−1, ϕr)]2 + [𝜎(ψr, ϕ1𝑎2𝑟−1)]2

𝜎(ψ𝑎2𝑙−1, ϕr) + 𝜎(ψr, ϕ1𝑎2𝑙−1)
+ 𝜃𝜌(ψ𝑎2𝑙−1, ψr) 

≤ ε
[𝜎(ψ𝑎2𝑙−1, ψr) + 𝜎(ψr, ϕ1𝑎2𝑟−1)]2

𝜎(ψ𝑎2𝑙−1, ϕr) + 𝜎(ψr, ϕ1𝑎2𝑙−1)
                                        

≤ ε[𝜌(ψ𝑎2𝑙−1, ψr) + 𝜌(ψr, ψ𝑎2𝑙)] + 𝜃𝜌(ψ𝑎2𝑙−1, ψr)                

Letting→ ∞, then          

 𝜌(𝑟, ψr) ≤ (2∆ + 𝜃)𝜌(𝑟, ψr) 

Which gives a contradiction. Thus r = ψr 

⇒ r = ψr ∈ ϕr ∩ ϕ1r. 
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Corollary: - 

1. If ∆= 0, we get an extension of famous Banach fixed point theorem. 

2. If 𝜃 = 0, we get new relation. 

3. By the hypothesis, 𝑎 ≠ b, ϕ1𝑎 ≠ ϕ1𝑏 is necessary. Since the theorem fails for ϕ and ϕ1 

 taken as constant mappings which is expressed by the following example. 

 Let 𝜉 = [0, 1], 

  ψ𝑎 = 1 − 𝑎. 

 We consider ϕ𝑎 = ϕ1𝑎 = {0, 1} 

 When, 𝑎 ∈ 𝜉. 

 Thus, by hypothesis, 

 𝑎 ≠ 𝑏, ϕ𝑎 ≠ 𝑏, ψ𝑎 ≠ ψ𝑏   

 we see that, 

 ψ (
1

2
) = 1 −

1

2
=

1

2
 

 ∵
1

2
 ∄ ϕ (

1

2
) ∩ ϕ1 (

1

2
). 

 ⇒ ϕ, ϕ1, and ψ have no common fixed point. 
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